
www.ntop.org – June 2010

nProbe with FastBit Database:
 an Innovative Flows Storage Solution

nProbe, acronym for NetFlow probe, is an open-source probe that supports both
NetFlow and sFlow collection, as well as flow conversion between versions (for instance
convert v5 to v9 flows). It fully supports the NetFlow v9/IPFIX so it has the ability to
specify dynamic flow templates that are configured when the tool is started.

nProbe has been designed to keep up with Gigabit speeds on commodity hardware
and it can be used for capturing packets and analyzing networks at full speed with no
(or very moderate) packet loss using PF_RING1.

Each captured packet is analyzed, associated to a flow record, and stored onto a hash.
Periodically, the hash is analyzed and expired flows are emitted and exported to the
specified collectors. nProbe is fully inter-operable with commercial collectors such as
Fluke, Cisco NetFlow Collector, Dartware, AdventNet, Arbor Networks, Plixer, NetFlow
Auditor, SolarWinds Orion NTA. Exported flows can also be analyzed using open source
tools such as ntop.

nProbe Storage System

When nProbe is used as probe and collector, it supports flow collection and storage,
both on raw files and relational databases such as MySQL and SQLite.

Support of relational databases has always been controversial as nProbe users appre-
ciated the ability to query flow records using SQL, but at the same time flow dump to
database could lead to flow records loss due to the database-processing overhead.
On the contrary, the speed advantage of dumping flow records in raw format is paid at
each search operation in terms of amount of data to read. Furthermore, the query lan-
guage that can be used is limited when compared to SQL facilities.

In order to overcome the limitations of existing flow-management systems, an
extension of nProbe has been developed. This allows flow records to be stored on disk,
using an innovative column-oriented database with an efficient compressed bitmap
indexing technology named FastBit.

A column-oriented database stores its content by column, rather than by row (known
as vertical organization). On this way, the values for each single column are stored
contiguously, and column-stores compression ratios are generally better than row-
stores, because consecutive entries in a column are homogeneous to each other.
Furthermore, for tasks that demand the fastest possible query processing speed,
bitmap indexes perform extremely well. These because the intersection between the
search results on each variable is a simple AND operation over the resulting bitmaps.

Conceptually FastBit is a database where data is represented as tables with rows and
columns allowing storing and retrieving of data, designed primarily to answer queries
efficiently.

1 More details about PF_RING can be found here: www.ntop.org/PF_RING.html

http://www.ntop.org/PF_RING.html

The extended nProbe creates FastBit partitions depending on the flow templates being
configured (in probe mode) or read from incoming flows (in collector mode), with
columns having the same size and the same name as the NetFlow element it contains.

F ig. 1 New nProbe Flow Record Collection and Export Architecture

It is not necessary to configure FastBit in a specific way as nProbe knows the flow
format, and then it automatically creates partitions and columns. A large table may be
partitioned into many data partitions and each of them are stored on a distinct
directory, with each column stored as a separated file in raw binary form.

Users can configure partition duration (in minutes) at runtime and when a partition
reaches its maximum duration, a new one will be automatically created. Partition
names are created on a tree fashion (e.g. <dir>/year/month/day/hour/minute)
and in each data partition there is an extra file, named -part.txt, that contains
meta data information such as the name of the partition, and column names. In
addition, there have been developed facilities for rotating partitions hence limiting disk
space usage while preserving their structure.

The use of nProbe with FastBit is a major step ahead if compared to state-of-the-art
tools based on both relational databases and raw data dump. Flow records can be
dumped at full speed with no index-build overhead. Thus, not considering flow
receive/decoding overhead, it is possible to save on disk more than one million flow
records/sec on a standard Serial ATA (SATA) disk.

Additional advantages of this technology are listed below:

• Ability to save flow records on disk with minimal overhead allowing no-loss on-
the-fly flow-to-disk storage, as it happens with tools based on raw files.

• Compact data storage to limit disk usage as this enables users to store months
of flow records on a cheap hard-disk with no need to use expensive storage
systems.

• Simple data archive structure in order to move ancient data on off-line storage
systems, without having to use complex data partitioning solutions.

• On tens of millions of records: sub-second search time when performing
cardinality searches (e.g. count the number or records that satisfy a certain
criteria) and sub-minute search time when extracting records matching a
certain criteria (e.g. top X hosts and their total traffic on TCP port Y).

nProbe Command Line Options

Only the additional options that can be used to configure nProbe to store flow records
using the new FastBit format are listed below.

--fastbit <dir> Pathname of base directory where FastBit files will be
created. Partition names are created on a tree fashion (e.g.
<dir>/year/month/day/hour/minute)

--fastbit-rotation <mins> Every <mins> minutes a new FastBit sub-directory is
created so that each directory contains at most <mins>
minutes. Default: 5 minutes. Please read the note below.

--fastbit-template <template> Fields that will be dumped on FastBit partitions. Its syntax is
the same as the -T flag (see the appendix for further
information about the NetFlow fields). The selected fields
must start with a % symbol and must be separated by a
space. If this flag is not specified, all the specified flow
elements (-T) will be dumped.

--fastbit-index <template> Index each directory containing FastBit files as soon as the
directory has been dumped. The flow template specifies
which columns will be indexed. Its syntax is the same as
the -T flag (see the appendix for further information about
the NetFlow fields). This option requires that the fbindex
application is installed or built. If this flag is not specified,
all columns will be indexed.

--fastbit-exec <cmd> Executes the specified command <cmd> after a directory
has been dumped (and optionally indexed). The command
must take an argument that is the path to the directory just
dumped.

Note:
It is wise to avoid creating large partitions, but at the same time the creation of too
many small partitions must also be avoided. Thus will result in many files created on
disk and the overhead of accessing them (open, close and file seek time) can dominate
the data analysis time. A good compromise is to have partitions that either last a fixed
amount of time (e.g. 5 minutes of flow records) or that have a maximum number of
records. Typically, for a machine with a few GB of memory, FastBit developers
recommend data partition containing between 1 million and 100 million records.

nProbe Examples

Some examples of command line options and output messages of the latest version of
nProbe configured to use the FastBit database are shown below.

A simple example of nProbe configured to dump flow records in the temporary
directory /tmp/fastbit/ with a rotation period of 10 minutes:

An example of nProbe configured to dump flow records in the temporary directory and
to index only the “IPV4_SRC_ADDR %IPV4_DST_ADDR” columns after each directory
that has been dumped:

nprobe -n none -i eth0 --fastbit /tmp/fastbit/ --fastbit-rotation 10 --fastbit-template
"%IPV4_SRC_ADDR %IPV4_DST_ADDR %IN_PKTS %IN_BYTES %OUT_PKTS %OUT_BYTES %FIRST_SWITCHED
%LAST_SWITCHED %L4_SRC_PORT %L4_DST_PORT %TCP_FLAGS %PROTOCOL"

nprobe -n none -i eth0 --fastbit /tmp/fastbit/ --fastbit-template "%IPV4_SRC_ADDR
%IPV4_DST_ADDR %IN_PKTS %IN_BYTES %OUT_PKTS %OUT_BYTES %FIRST_SWITCHED %LAST_SWITCHED
%L4_SRC_PORT %L4_DST_PORT" --fastbit-index "%IPV4_SRC_ADDR %IPV4_DST_ADDR”

An example of nProbe configured to dump flow records in the temporary directory
/tmp/fastbit/ and to execute a specified command after each directory that has
been dumped. In this simple example, the command to be run is “ls”:

Finally, an example of the output message of the latest version of nProbe with FastBit
database configured and the list of possible files contained in a FastBit directory:

[nprobe.c:2266] Welcome to nprobe v.5.5 ($Revision: 1284 $) for i686-pc-linux-gnu
..
[fastbit/fastbit.c:172] Fastbit files will be saved in /tmp/fastbit/2010/02/13/15/00
[fastbit/fastbit.c:357] Successfully initialized FastBit
..
[nprobe.c:3411] Capturing packets from interface eth0

nprobe -n none -i eth0 --fastbit /tmp/fastbit/ --fastbit-template "%IPV4_SRC_ADDR
%IPV4_DST_ADDR %IN_PKTS %IN_BYTES %OUT_PKTS %OUT_BYTES %FIRST_SWITCHED %LAST_SWITCHED
%L4_SRC_PORT %L4_DST_PORT" –-fastbit-exec "ls"

> ls /tmp/fastbit/2010/02/13/15/00
-part.txt
FIRST_SWITCHED
IN_BYTES
IN_PKTS
IPV4_DST_ADDR
IPV4_SRC_ADDR
L4_DST_PORT
L4_SRC_PORT
LAST_SWITCHED
OUT_BYTES
OUT_PKTS
PROTOCOL
TCP_FLAGS

FastBit-based tools:
 fbindex, fbmerge and fbquery

Data insert and query facilities are performed by means of FastBit library calls or using
a subset of SQL, natively supported by the library. Due to the fact that the FastBit
database was not designed to handle network flow records, have been developed
three tools to implement some missing features that are a prerequisite to create
comprehensive network traffic reports.

fbindex

This tool is used to index a FastBit partition. Indexes can be created on data “as stored
on disk” or on reordered data. This is a main difference to conventional databases, in
fact it is possible to first reorder data, column by column, so that bitmap indexes are
built on reordered data. Please note that reordering just improves index size and query
speed.

This tool can be used with nProbe (parameter --fastbit-index) to index a partition
as soon as the directory has been dumped by nProbe.

Users can decide to build indexes on all or only on a few selected columns. This in
order to save space creating indexes for columns that will never be used in queries. If
FastBit does not find an index for a key column while executing a query, it will build the
index for such a column on the fly.

Usage: fbindex [-s] [-c <column names>] [-t <threads>] -d <directory>

-s Flag to reorder data before indexing

-c <column names> Specify a list of column names separated by comma to index.

-t <threads> Specify the number of threads to use during the indexing
process. Default: 2

-d <directory> Absolute or relative pathname of directory to index

fbmerge

This tool is used to merge several FastBit partitions into a single one. The mentioned
tool, now part of the FastBit distribution, is useful when small fine-grained partitions
need to be aggregated into a larger one.

For instance if nProbe is configured to create “one minute” partitions, at the end of the
hour, all of them can be aggregated into an “one hour” partition by means of fbmerge.
This allows the number of column files hence the number of disk i-nodes to be reduced
a lot, very useful on large disks containing many days/months of collected records.

Usage: fbmerge -i <input dir> -o <output dir> [-d]

-i <input directory> Absolute or relative pathname of input directory

-o <output directory> Absolute or relative pathname of output directory

-d Flag to enable dump mode

fbquery

This tool has been developed to perform queries on FastBit partitions dumped by
nProbe. fbquery is a command-line tool that supports SQL-like syntax to query data
and that allows to implement on top of the FastBit library some useful facilities.

The queries accepted by fbquery are indicated in a simplified SQL format. A query is
basically a SQL SELECT statement where the following clauses can be specified:

• an optional SELECT clause using the fbquery parameter "--columns"
• a mandatory FROM clause using the fbquery parameter "--directory"
• an optional WHERE clause using the fbquery parameter "--query"

According to the SQL standard all the keywords, the operators, the function names,
and the names of the columns are not case sensitive. Moreover, the blank spaces
around the parameters, around the operators or around column names are ignored.

The following paragraph shows the requirements of these three clauses implemented
in fbquery and shows some examples of use.

 Usage: fbquery [-c <columns>] -d <directory> [-q <query-conditions>]
 [-o <orderby-columns>] [-r] [-g <groupby-columns>]
 [-m <metadata-file>] [-D] [-L <i[,j]>] [-S <separator>]
 [-H] [-N] [-V] [-Q]

Information about the program

--help
-h Shows help message and exit

--version
-v Shows fbquery version number and exit

Parameters for input data

--columns <column names>
-c <column names>

List of column names separated by comma and any of the four
one-argument functions: MIN(), MAX(), SUM() and AVG().

--directory <directory>
-d <directory>

Pathname of directory containing a Fastbit partition on which
execute the query. Multiple partitions can be defined using
multiple -d flags.

--query <conditions>
-q <conditions>

It specifies the conditions of the query with a set of range
conditions joined together with logical operators. The supported
logical operators are: AND, OR, XOR and NOT. The range
conditions can be defined with the operators: <, <=, >, and >=.

--orderby <column names>
-o <column names>

Used to sort the results in according to columns specified (can
be specified more columns comma separated). By default, the
values are sorted in ascending order.

--reverse
-r

Sort values in descending order in according to columns in the
ORDER BY clause (or in the SELECT clause, if no ORDER BY clause
is specified).

--groupby <column names>
-g <column names>

Used along with the aggregate functions like SUM() to provide
means of grouping the result by certain columns.

--metadata-file <file>
-m <file>

Pathname of the file with flow metadata that has been dumped
by nProbe. (This file allows to fbquery to print results with a
customized format)

--distinct
-D Retrieves only unique rows from the result set.

--limit <i[,j]>
-L <i[,j]>

Limit query results to those that fall within a specified range.
Can be used to show the first i number of results, or to show a
range using <i,j>, where i is the starting point (the first record
is 0) and j is the duration (how many records to display) .

--separator <separator>
-S <separator>

Character to be used as CSV-separator between columns of
results.

--hide-header
-H Hide the header line that contains the column names.

--native-format
-N Print each selected column with its native format.

Verboseness of the program

--verbose
-V Increase the verboseness of fbquery functions.

--quiet
-Q Disable the verboseness of FastBit functions.

Further Detai ls and Query Examples

The SELECT clause contains a list of column names separated by comma and any of
the four one-argument functions such as MIN(), MAX(), SUM() and AVG().

Each of the four functions can take only one column name as its argument and blank
spaces are not allowed between the brackets and the name of the column itself. The
syntax of the aggregate functions is as follows:

 MAX(<column name>)
 MIN(<column name>)
 SUM(<column name>)
 AVG(<column name>)

To retrieve only the distinct rows from the result set can be specified the flag "-D". If the
SELECT clause is omitted, it is assumed to be "SELECT COUNT(*)", and the query
purpose is to count the number of hits that match the conditions specified.

Suppose we have a FastBit partition simply called "database", some examples of
query with different SELECT clause are listed below.

Example of SELECT clause with only one name of column:

Example of SELECT clause with two column names separated by comma:

Examples of SELECT clause with aggregate operations and columns names:

fbquery -c "MAX(L4_SRC_PORT)" -d "database" -q "IPV4_SRC_ADDR=12.120.60.90"
fbquery -c "MIN(L4_DST_PORT)" -d "database" -q "L4_SRC_PORT=80"
fbquery -c "IPV4_SRC_ADDR,SUM(OUT_BYTES)" -d "database" -q "L4_SRC_PORT=80"

fbquery -c "IPV4_SRC_ADDR,IPV4_DST_ADDR" -d "database" -q "L4_SRC_PORT=80"

fbquery -c "IPV4_SRC_ADDR" -d "database" -q "L4_SRC_PORT=80"

Example of SELECT with COUNT(*):

Example of the output with no SELECT clause (it counts the number of hits):

The FROM clause is mandatory and it specifies the absolute or the relative pathname
of a directory containing a Fastbit partition on which execute the query. Multiple
directories can be defined using multiple parameters "-d".

Suppose we have two FastBit partitions simply called “database1” and “database2”.
An example of query with the clause FROM using multiple directories is shown below:

The WHERE clause is used to extract only those records that fulfill the specified criteria.
It specifies the conditions of the query with a set of range conditions joined together
with logical operators: AND, OR, XOR, and NOT.

The supported range conditions can be subdivided into:

• equality conditions
An equality condition is defined by the equal operator "=" and its two operands
can be arithmetic expressions, column names, numbers or string literals.

• discrete ranges
A discrete range is defined by the operator "IN". Its syntax is: "<column_name>
IN (A,B,..,Z)" where A, B, and Z can be a list of strings or numbers,
comma separated. Please note that the statement "A IN (B,C)" is equivalent
to "A = B OR A = C".

• one-sided and two-sided range conditions.
A range condition can be one-sided as "A > 10", or two-sided as "10 <= A <
20." It can be defined with operators selected from: <, <=, >, and >=. The
operands of the operator can be any arithmetic expression, column names or
numbers. Alternatively, a two-side range can be defined with operators
"BETWEEN-AND", where: "A BETWEEN B AND C" is equivalent to "B <= A <=
C". The operands A, B, and C can be any arithmetic expression, column name
or number.

Please note that an arithmetic expression may contain operators +, -, *, /, %, and ^
(the operator ^ denote the exponential operation). All one-argument and two-
argument arithmetic functions available in the file math.h are supported.

Suppose we have a FastBit partition called “database”, some examples of query with
different WHERE clause are listed below.

Example of WHERE clause with an equality condition:

fbquery -d "database/" -q "L4_SRC_PORT=80"
[fbquery] Query produced 226 hits, took 0.004 CPU seconds, 0.032 elapsed seconds

 fbquery -c "L4_SRC_PORT" -d "database" -q "L4_SRC_PORT=80"

fbquery -c "IPV4_SRC_ADDR" -d "database1" -d "database2" -q "L4_SRC_PORT=80"

fbquery -c “IPV4_SRC_ADDR,COUNT(*)" -d "database" -q "L4_SRC_PORT>=0"

Example of WHERE clause with a logical operator:

Example of WHERE clause with the operator IN:

Example of WHERE clause with operator BETWEEN-AND:

How to Format Query Results

The query result is printed in a CSV format in which the default delimiter is a comma. To
specify a different separator can be used the parameter "--separator".

Before displaying the rows that match the conditions of the query, fbquery displays a
line containing the names of selected columns. To hide this header line can be
specified the flag "--hide-header".

To suitably format the results, like an IPv4 formatted in dot-notation, can be used the
parameter "--metadata-file", followed by the pathname of the file with flow meta-
data dumped by nProbe. This file can be obtained from nProbe with its parameter "--
dump-metadata <file>" and it can be customized to indicate the format in which
each column must be printed.

fbquery formats by default only the columns that contain IP addresses in order to
print their values in dotted notation (please note that the tool is able to recognize only
the column names IPV4_SRC_ADDR and IPV4_DST_ADDR). To disable this automatic
formatting of columns can be specified the flag "--native-format".

To sort in ascending order the values of specific columns can be used the parameter
"--orderby" followed by the list of column names that want to order. Please note that
the flag "--reverse" sorts the values in descending order in according to columns
specified in the ORDER BY clause (or in the SELECT clause if no ORDER BY clause is
specified).

To limit query results to those that fall within a specified range can be used the
parameter "--limit <i,j>". The value of i is the starting point (remember that the
first record is 0) and j is the duration (how many records to display). This parameter
can also be used only to show the first n results using only one positive number as
value of i, omitting j.

Some examples of query with different flags to format the results are listed below.

Examples of query with parameter --limit used to show only the first 5 results.

fbquery -c "IPV4_SRC_ADDR" -d "database" -q "NOT L4_SRC_PORT=22"

fbquery -c "L4_DST_PORT" -d "database/" -q "L4_SRC_PORT IN (22,25,80)"

fbquery -c "L4_DST_PORT" -d "database" -q "L4_SRC_PORT BETWEEN 25 AND 80"

fbquery -c "L4_DST_PORT" -d "database" -q "L4_DST_PORT>0" --limit 5
L4_DST_PORT
1
2
3
4
5

How to Play with IP Addresses

As the FastBit library was not designed for handling network flows, have been
implemented some missing features. On this way, for example, IP addresses can be
managed in a better way.

FastBit partitions can be queried by means of fbquery by specifying an IP address in
dotted decimal notation or with IP address range, using a subnet mask notation.

Example of query with an IPv4 in dotted decimal notation:

Examples of query with IPv4 addresses with specified subnet mask:

fbquery -c "IPV4_DST_ADDR,L4_DST_PORT" -d "database" -q "IPV4_DST_ADDR=10.0.0.1"
IPV4_DST_ADDR,L4_DST_PORT
10.0.0.1,80
10.0.0.1,9105
10.0.0.1,9106

fbquery -c "IPV4_DST_ADDR" -d "database" -q "IPV4_DST_ADDR=10.0.0.1/24"
IPV4_DST_ADDR
10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4
10.0.0.6
10.0.0.7
10.0.0.9
10.0.0.10
10.0.0.64
10.0.0.114
...

fbquery -c "IPV4_DST_ADDR" -d "database" -q "IPV4_DST_ADDR != 10.0.0.1/24"
IPV4_DST_ADDR
0.0.0.0
0.0.24.63
0.0.24.89
0.1.0.6
0.10.149.85
0.18.218.179
0.21.92.100
0.21.216.230
0.21.217.44
...

Appendix A
NetFlow v9/IPFIX Flow Format

The -T flag (as -–fastbit-template and --fastbit-index) enabled users to
specify the format of NetFlow v9/IPFIX flows. The format options currently supported by
nProbe are those specified in the NetFlow v9 RFC, namely (in square brackets it is
specified the field Id as defined in the RFC):

[1] %IN_BYTES Incoming flow bytes
[2] %IN_PKTS Incoming flow packets
[3] %FLOWS Number of flows
[4] %PROTOCOL IP protocol byte
[132] %PROTOCOL_MAP IP protocol name
[5] %SRC_TOS Type of service byte
[6] %TCP_FLAGS Cumulative of all flow TCP flags
[7] %L4_SRC_PORT IPv4 source port
[135] %L4_SRC_PORT_MAP IPv4 source port symbolic name
[8] %IPV4_SRC_ADDR IPv4 source address
[9] %SRC_MASK Source subnet mask (/<bits>)
[10] %INPUT_SNMP Input interface SNMP idx
[11] %L4_DST_PORT IPv4 destination port
[139] %L4_DST_PORT_MAP IPv4 destination port symbolic name
[12] %IPV4_DST_ADDR IPv4 destination address
[13] %DST_MASK Dest subnet mask (/<bits>)
[14] %OUTPUT_SNMP Output interface SNMP idx
[15] %IPV4_NEXT_HOP IPv4 next hop address
[16] %SRC_AS Source BGP AS
[17] %DST_AS Destination BGP AS
[21] %LAST_SWITCHED SysUptime (msec) of the last flow pkt
[22] %FIRST_SWITCHED SysUptime (msec) of the first flow pkt
[23] %OUT_BYTES Outgoing flow bytes
[24] %OUT_PKTS Outgoing flow packets
[27] %IPV6_SRC_ADDR IPv6 source address
[28] %IPV6_DST_ADDR IPv6 destination address
[29] %IPV6_SRC_MASK IPv4 source mask
[30] %IPV6_DST_MASK IPv4 destination mask
[32] %ICMP_TYPEICMP Type * 256 + ICMP code
[34] %SAMPLING_INTERVAL Sampling rate
[35] %SAMPLING_ALGORITHM Sampling type (deterministic/random)
[36] %FLOW_ACTIVE_TIMEOUT Activity timeout of flow cache entries
[37] %FLOW_INACTIVE_TIMEOUT Inactivity timeout of flow cache entries
[38] %ENGINE_TYPE Flow switching engine
[39] %ENGINE_ID Id of the flow switching engine
[40] %TOTAL_BYTES_EXP Total bytes exported
[41] %TOTAL_PKTS_EXP Total flow packets exported
[42] %TOTAL_FLOWS_EXP Total number of exported flows
[56] %IN_SRC_MAC Source MAC Address
[57] %OUT_DST_MAC Destination MAC Address
[58] %SRC_VLAN Source VLAN
[59] %DST_VLAN Destination VLAN
[60] %IP_PROTOCOL_VERSION [4=IPv4][6=IPv6]
[61] %DIRECTION [0=ingress][1=egress] flow
[70] %MPLS_LABEL_1 MPLS label at position 1
[71] %MPLS_LABEL_2 MPLS label at position 2
[72] %MPLS_LABEL_3 MPLS label at position 3
[73] %MPLS_LABEL_4 MPLS label at position 4
[74] %MPLS_LABEL_5 MPLS label at position 5
[75] %MPLS_LABEL_6 MPLS label at position 6
[76] %MPLS_LABEL_7 MPLS label at position 7

[77] %MPLS_LABEL_8 MPLS label at position 8
[78] %MPLS_LABEL_9 MPLS label at position 9
[79] %MPLS_LABEL_10 MPLS label at position 10
[80] %FRAGMENTED 1=some flow packets are fragmented
[81] %FINGERPRINTTCP fingerprint
[82] %CLIENT_NW_DELAY_SEC Network latency client <-> nprobe (sec)
[83] %CLIENT_NW_DELAY_USEC Network latency client <-> nprobe (usec)
[84] %SERVER_NW_DELAY_SEC Network latency nprobe <-> server (sec)
[85] %SERVER_NW_DELAY_USEC Network latency nprobe <-> server (usec)
[86] %APPL_LATENCY_SEC Application latency (sec)
[87] %APPL_LATENCY_USEC Application latency (sec)
[96] %IN_PAYLOAD Initial payload bytes
[97] %OUT_PAYLOAD Initial payload bytes
[98] %ICMP_FLAGS Cumulative of all flow ICMP types

Plugin SIP templates:
[130] %SIP_CALL_IDS IP call-id
[131] %SIP_CALLING_PARTY SIP Call initiator
[132] %SIP_CALLED_PARTY SIP Called party
[133] %SIP_RTP_CODECS SIP RTP codecs
[134] %SIP_INVITE_TIME SIP SysUptime (msec) of INVITE
[135] %SIP_TRYING_TIME SIP SysUptime (msec) of Trying
[136] %SIP_RINGING_TIME SIP SysUptime (msec) of RINGING
[137] %SIP_OK_TIME SIP SysUptime (msec) of OK
[138] %SIP_ACK_TIME SIP SysUptime (msec) of ACK
[139] %SIP_RTP_SRC_PORT SIP RTP stream source port
[140] %SIP_RTP_DST_PORT SIP RTP stream dest port

Plugin Efficiency calculation templates
[165] %EFFICIENCY_SENT Avg. transmission efficiency % (send)
[166] %EFFICIENCY_RCVD Avg. transmission efficiency % (rcvd)

Plugin Video protocol detection (skeleton plugin) templates:
[188] %VIDEO_PROTO Simple counter

Plugin SMTP Protocol Dissector templates
[185] %SMTP_MAIL_FROM Mail sender
[186] %SMTP_RCPT_TO Mail recipient

Plugin Flow Serial Identifier templates
[190] %FLOW_ID Serial Flow Identifier

Plugin HTTP Protocol Dissector templates
[180] %HTTP_URL HTTP URL
[181] %HTTP_RET_CODE HTTP return code (e.g. 200, 304...)

Plugin dump templates
[100] %DUMP_PATH Path where dumps will be saved

Plugin RTP templates
[150] %RTP_FIRST_SSRC First flow RTP Sync Source ID
[151] %RTP_FIRST_TS First flow RTP timestamp
[152] %RTP_LAST_SSRC Last flow RTP Sync Source ID
[153] %RTP_LAST_TS Last flow RTP timestamp
[154] %RTP_IN_JITTER RTP Jitter (ms * 1000)
[155] %RTP_OUT_JITTER RTP Jitter (ms * 1000)
[156] %RTP_IN_PKT_LOST Packet lost in stream
[157] %RTP_OUT_PKT_LOST Packet lost in stream
[158] %RTP_OUT_PAYLOAD_TYPE RTP payload type
[159] %RTP_IN_MAX_DELTA Max delta between consecutive pkts
[160] %RTP_OUT_MAX_DELTA Max delta between consecutive pkts

Example

If you want to specify NetFlow v9 flows in a format similar to NetFlow v5 flows, you can
do as follows:

Note that the fields start with a % symbol and they are separated by a space.

nprobe -T "%IPV4_SRC_ADDR %IPV4_DST_ADDR %IPV4_NEXT_HOP %INPUT_SNMP
%OUTPUT_SNMP %IN_PKTS %IN_BYTES %FIRST_SWITCHED %LAST_SWITCHED
%L4_SRC_PORT %L4_DST_PORT %TCP_FLAGS %PROTOCOL %SRC_TOS %SRC_AS
%DST_AS %SRC_MASK %DST_MASK"

