

OPEN SOURCE[®] SYSTEM MANAGEMENT CONFERENCE 2012

Getting More Information On Your Network Performance

Luca Deri <deri@ntop.org>

Network Traffic is a Moving Target

- For years network administrators have identified traffic protocols and services using IP address and ports:
 Port 80 = HTTP.
 - Network x.y.z.0/24 identifies users of factory site Rome.
 - HTTPS is a secure connection to a web site.
- Unfortunately the above statements do not longer hold:
 - Protocols might use dynamic ports.
 - Well known ports might not carry the traffic we expect (80 != http).
 - Encryption does not always mean security (SSL vs OpenVPN).
 - Users moves and often do not need to connect back to the home network for carrying on their job.

The Cloud is Here

- Up to some years ago, software companies wanted to sell their products (e.g. word processors and spreadsheets).
- Today many people use collaborative services based on the cloud (e.g. Google Docs or MS Office 365).
- Remote conferencing (e.g. Webex or GoToMeeting) are all cloud-based.
- Popular apps such as EverNote such used to keep track of notes on computers and mobile devices, storing your (private) data onto the cloud and <u>not</u> on your data centers (where you can enforce the security policy).

Network Health Monitoring is Complex

OURCE

E 2012

GEMENT

- Traditional network monitoring systems can limit their supervision activities to "home" networks.
- Mobile users, intra-VM data exchange, or cloud services are often invisible to network monitoring systems.
- Traditional firewalls are becoming blind as:
 - Generic (e.g. HTTP) protocols can be used to tunnel nonhypertext services (e.g. music streaming).
 - HTTPS is not checked so often it flows unrestricted.
- Cloud services access can't be monitored with simple "periodic pings" as provides IPs are often unresponsive and change according to our location.

Traffic Performance Requirements

GEMENT

E 2012

N SOURCE"

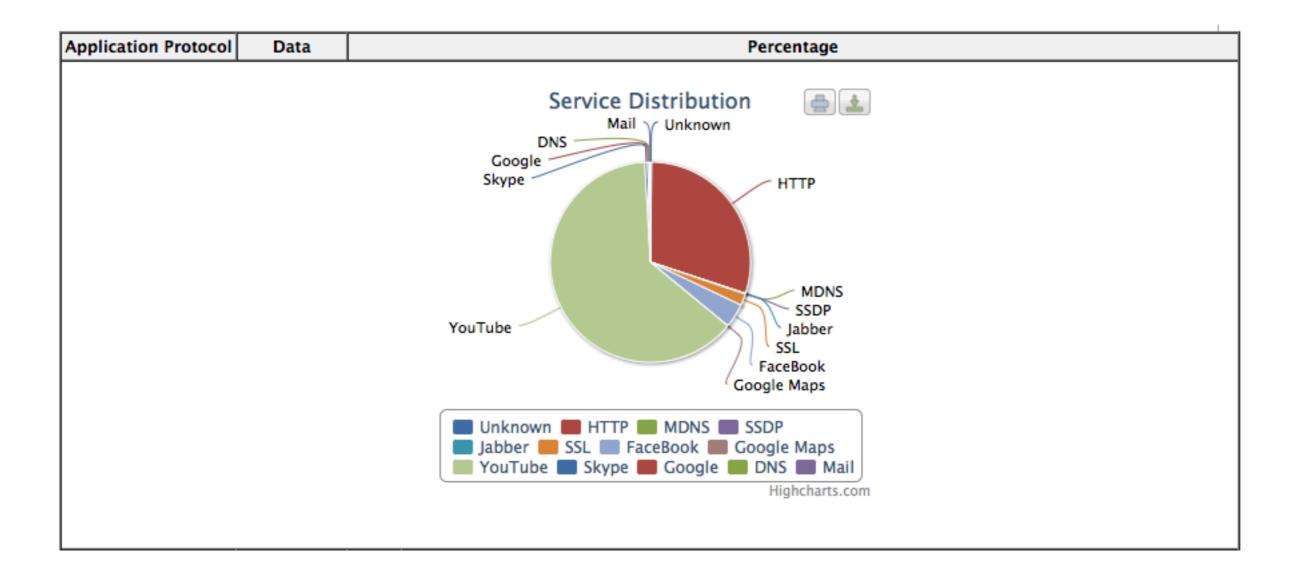
- Make sure that:
 - Locally provided services are in good health.
 - Remote services can be reachable with limited network latency.
 - Cloud services are accessed with good performance.
 - The management console can:
 - Passively track all traffic flows.
 - Identify the application used by each flow so that we can characterize the nature of the traffic flowing onto the network.
 - Compute KPI (Key Performance Indicators) so that network administrators can have a flavor of what is the current network health.

Network KPIs

- Literature and Internet RFCs defined base indicators including bandwidth, packet loss, latency and jitter.
- Those indicators however need to be associated with a protocol, so that we can trigger alerts:
 - VoIP callers notice roundtrip voice delays of 250 ms (G.114 recommends no more than 150 ms one-way latency) whereas they can operate on networks of limited bandwidth (e.g. 80 Kbit for G.711).
 - HTTP users can tolerate higher latency but pretend larger bandwidth.
- On a nutshell, application protocol detection is mandatory.

The need for DPI

- DPI (Deep Packet Inspection) is a technique for inspecting the packet payload for the purpose of extracting metadata (e.g. protocol).
- There are many DPI toolkits available but they are not what we looked for as:
 - They are proprietary (you need to sign an NDA to use them).
 - They are pretty costly for both purchase and maintenance.
 - Adding a new protocol requires vendor support (i.e. it has a high cost and might need time until the vendor supports it) = you're locked-in.
- Linux L7-filter is quite slow and error prone.
- On a nutshell DPI is a requirement but the market does not offer an alternative for open-source.

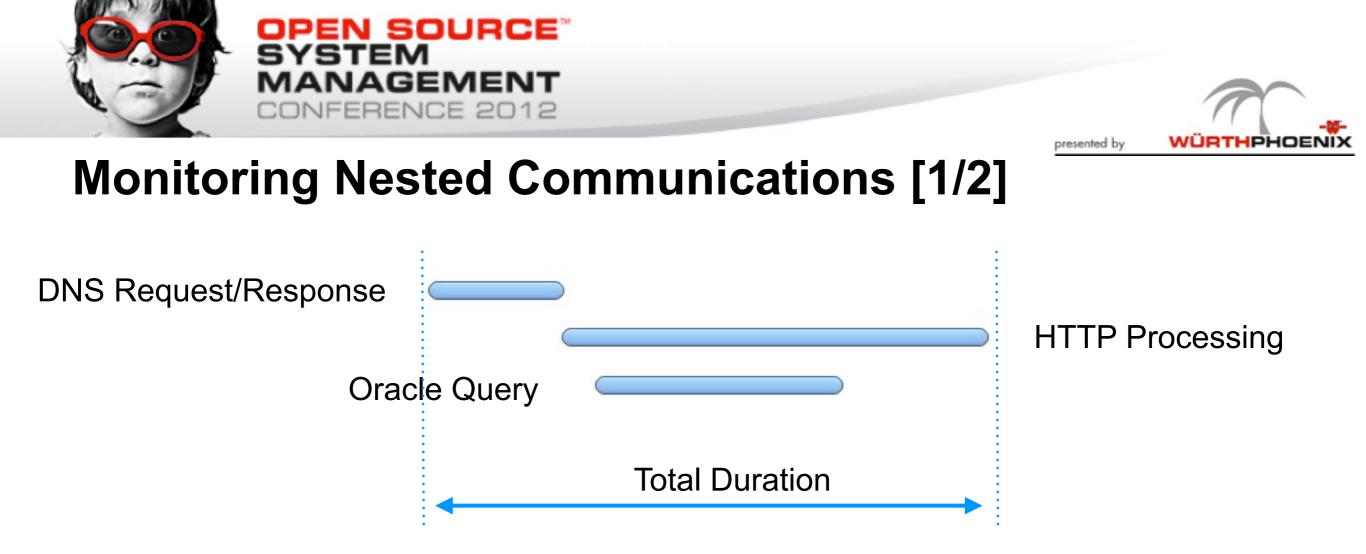

Say hello to nDPI

- ntop has decided to develop its own GPL DPI toolkit (based on a DPI toolkit **OpenDPI.org** now popped off the Internet) in order to build an open DPI layer for ntop and third party applications.
- Supported protocols (over 140) include:
 - P2P (Skype, BitTorrent)
 - Messaging (Viber, Whatsapp, MSN, The Facebook)
 - Multimedia (YouTube, Last.gm, iTunes)
 - Conferencing (Webex, CitrixOnLine)
 - Streaming (Zattoo, Icecast, Shoutcast, Netflix)
 - Business (VNC, RDP, Citrix, *SQL)

ntop/nProbe with nDPI

Tracking Generic KPIs with nProbe [1/2]

- nProbe is an open source network traffic probe developed by ntop and used in many products such as Würth-Phoenix NetEye.
- Recently nProbe has been enhanced for <u>continuously</u> tracking KPIs and not just at the beginning of each connection as in past versions.
- KPIs are complemented with protocol information detected by the nDPI toolkit.
- This enables network administrators to evaluate the application performance for the whole duration of the communication.


Tracking Generic KPIs with nProbe [2/2]

SOURCE

NCE 2012

AGEMENT

- Monitored Generic KPIs (per flow) include:
 - Network and application delay, partitioned in client and server delay (i.e. you know if the bottleneck is on the client or on the server side).
 - TCP packet retransmission (i.e. your network is leaking packets)
 - IP packets out-of-order (i.e. you have congestion issues)
 - TCP window change (i.e. monitor how healthy the TCP layer believes your connection is)
- All these KPIs are enough for giving a <u>baseline</u> of the connection healthiness and thus of your users <u>perceive</u> the provided network quality.

- When customers experience slow service response, it is necessary to rebuild all communication elements, and identify the source of the delay.
- Correlation of network events helps to figure out <u>which</u> component(s) is responsible for the poor performance.

[NFv9 57677][IPFIX 35632.205] %DNS_QUERY [NFv9 57678][IPFIX 35632.206] %DNS_QUERY_ID [NFv9 57679][IPFIX 35632.207] %DNS_QUERY_TYPE [NFv9 57680][IPFIX 35632.208] %DNS_RET_CODE [NFv9 57681][IPFIX 35632.209] %DNS_NUM_ANSWER [NFv9 57558][IPFIX 35632.86] %APPL_LATENCY_SEC [NFv9 57559][IPFIX 35632.87] %APPL_LATENCY_USEC

DNS query DNS query transaction Id DNS query type (e.g. 1=A, 2=NS..) DNS return code (e.g. 0=no error) DNS # of returned answers Application latency (sec) Application latency (usec)

#

When|DNS_Client|AS|ClientCountry|ClientCity|DNS_Server|Query|NumRetCode|RetCode|NumAnswer| NumQueryType|QueryType|TransactionId|Answers|AuthNSs

#

1326819546.137|A.B.C.D|XXXX|US||192.12.192.5|blogsearch.google.it|0|NOERROR|0|1|A|52017|| ns2.google.com;ns1.google.com;ns4.google.com;ns3.google.com

HTTP Monitoring in nProbe [1/2]

NFERENCE 2012

OPEN SOURCE"

MANAGEMENT

SYSTEM

[NFv9 57652][IPFIX 35632.180] %HTTP_URL [NFv9 57653][IPFIX 35632.181] %HTTP_RET_CODE [NFv9 57654][IPFIX 35632.182] %HTTP_REFERER [NFv9 57655][IPFIX 35632.183] %HTTP_UA [NFv9 57656][IPFIX 35632.184] %HTTP_MIME HTTP URL HTTP return code (e.g. 200, 304...) HTTP Referer HTTP User Agent HTTP Mime Type

#

# Client	Server	Protocol	Method	URL	HTTPRetu	ırnCode	Location			
	Referer	UserAgen	t ContentTy	/pe	Bytes	BeginTime	e EndTime	Flow		
Hash	Cookie	kie Terminator ApplLatency(ms)			ClientLatency(ms)					
	ServerLatency(ms) Application BalancerHostServerIP RetransmittedPkts									
#										
192.168.1.92 www.faceb			book.com	http	GET	GET /ajax/presence/reconnect.php?				
a=1&reason=6&iframe_loaded=false&post_form_id=efe1a067adb2f9db341d72d56ce42c5b&user										
=675644907 200			www.facebook.com/Repubblica?							
v=wall&ref=HRHT-3 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_1) AppleWebKit/534.48.3 (KHTML,										
like Gecko) Version/5.1 Safari/534.48.3 application/x-javascript3181										
1318023905.364 1318023905.990 10622429241840 C										
	367	0.038	128.810	Unknown		69.171.22	4.40	0		

Oracle/MySQL Monitoring in nProbe

[NFv9 57667][IPFIX 35632.195] %MYSQL SERVER VERSION MySQL server version [NFv9 57668][IPFIX 35632.196] %MYSQL_USERNAME MySQL username [NFv9 57669][IPFIX 35632.197] %MYSQL DB MySQL database in use [NFv9 57670][IPFIX 35632.198] %MYSQL QUERY MySQL Query [NFv9 57671][IPFIX 35632.199] %MYSQL RESPONSE MySQL server response [NFv9 57672][IPFIX 35632.200] %ORACLE USERNAME **Oracle Username** [NFv9 57673][IPFIX 35632.201] %ORACLE QUERY **Oracle Query** [NFv9 57674][IPFIX 35632.202] %ORACLE RSP CODE Oracle Response Code [NFv9 57675][IPFIX 35632.203] %ORACLE RSP STRING **Oracle Response String** Oracle Query Duration (msec) [NFv9 57676][IPFIX 35632.204] %ORACLE_QUERY_DURATION

#

Client Server ResponseCode ResponseMsg User Query BeginTime EndTime QueryDuration(sec) ClientLatency(ms) Bvtes ServerLatency(ms)

#

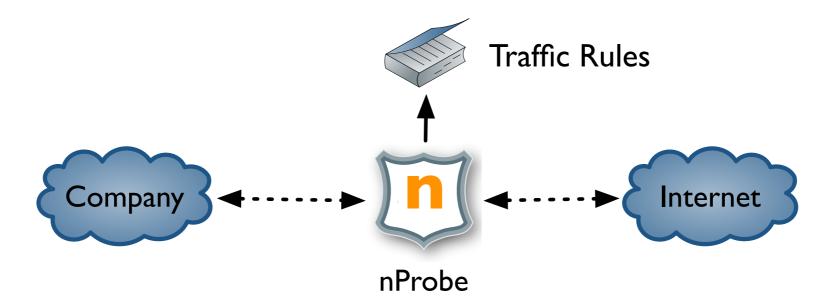
0.62.4.118 10.62.6.211 select * from COMPANY where JDOID 1333461770.861 =78544 0 310037 1333461795.892 0.024 0.000 0.000

Characterizing Encrypted Traffic

- As SSL usage is becoming pervasive, we cannot assume that SSL traffic is safe.
 - HTTPS can flow through proxies as follows:
 - CONNECT server.example.com:80 HTTP/1.1
 - CONNECT is insecure when:
 - It is used for bypassing the security as with Skype (connect with numeric IPs).
 - HTTPS/SSL is insecure when:
 - It is used as faked HTTP(s), e.g. used in OpenVPN for creating long-standing tunnels with the external sites.

How to Discriminate Good from Bad SSL?

- It is necessary to:
 - Decode the SSL certificate in order to find out the symbolic name of the server we're connecting to.
 - Find out on the certificate, who has signed it in order to figure out if it's a self-signed certificate (thus not trustable)
- As of today nProbe and nDPI decode the certificate and use it for giving network administrators evidence.


192.168.1.92 <u>www.facebook.com</u>	https	0	99552	1335613695.591		
1335613700.723	106229198	0	С	0	0.090	74.162
192.168.1.92 <u>www.mps.it</u>	https	0	4925	1335613685.470		
1335613686.557	2209353430	0	С	0	0.039	36.204
192.168.1.92 www.intesasanpaolo.com	https	0	19512	1335613677.972		
1335613708.776	2178073166	0	S	0	0.029	37.234
192.168.1.92 p05-caldav.icloud.com	https	0	6274	1335613713.652		
1335613714.340	3528810468	0	С	0	0.071	84.526

What's next?

- We're developing an extension to nProbe that allows people to both
 - Generate flow records on monitored traffic.
 - Use the probe as application firewall that can block/pass/shape traffic based on layer 7 protocols.
 - You can for instance (per IP, MAC address) say "block Skype, shape Facebook to 32 KB, let all the other traffic pass"

Conclusions

- Generic KPI give administrators the ability to understand how the network is behaving.
- nDPI allows you to associate these KPIs with an application protocol and thus an application.
- nProbe provides protocol-specific information (e.g. URL, cookie, SQL query, called VoIP number, voice quality indicators) in order to enable information correlation and thus better visibility.
- All you have read on this presentation is immediately available onto every nBox/NetEye box as well for your virtualized environments.