Sha kF Sl EUROPE
[N

eeeeeeeeeeeeeeeeeeee

A Deep Dive Into Traffic
Fingerprints using Wireshark

Luca Deri <deri@ntop.org>, @lucaderi
Ivan Nardi<ivan@ai2m.eu>, @i_nardi

SharkFest’24 EUROPE #Z 8.
Abo Ut U S Vienna, Austria « #sf24eu é‘\

* Luca is the founder of the ntop project that develops open source
network traffic monitoring applications. All code is available at
https://github.com/ntop

* lvan is a network and software engineer at AI2M, where they
develop data retention and traffic analysis systems. He has been
involved in DPI for more than 10 years and he is helping Luca (and

Toni) to maintain nDPI.
[m]2[u]

[=]

https://github.com/ntop

SharkFest’24 EUROPE
{ A

Vienna, Austria « #sf24eu

1. Introduction to Fingerprint

2. Passive Fingerprinting

3. Protocol Fingerprinting

4. Obfuscated Protocols Fingerprinting

SharkFest’24 EUROPE # &

n D P I i n a n Uts h el I Vienna, Austria « #sf24eu

* An open-source library providing:

 deep packet inspection engine for network visibility: protocol
classification, metadata extraction, flow risks computation

* basic blocks for a cyber-security application

* flow risks: an indication that in the flow there is something
unusual/dangerous to pay attention to

« ~60 different flow risks: self-signed certificate, possible
SQL/RCE injection, suspicious DGA domain, invalid
character in SNI...

« algorithms for data analysis: data forecasting, anomaly detection,
clustering and similarity evaluation, (sub-)string searching and IP
matching, probabilistic data structures,...

 Available on GitHub, no license required

nDPI & Wireshark SharkFest24 EUROPE JNg

* nDPI can be used with Wireshark via extcap functionality + Lua
scripting

* The extcap interface is a versatile plugin interface that allows
external binaries to act as capture interfaces directly in
Wireshark

* A simple way to have nDPI results into Wireshark/tshark GUI as
"first-citizen" objects

* Details: talk by Luca at SharkfestEU 2017
« Example: 100_extcap_tls_mismatch.pcapng (with extcap)

https://sharkfest.wireshark.org/retrospective/sfeu/presentations17eu/19.pdf

Sha kF st’24 EUROPE _.-"*«.__
| b

Part I:
Introduction to Fingerprinting

SharkFest’24 EUROPE

Wh at iS a N etWO rk Fi n g e rp ri nt Vienna, Austria * #sf24eu

* Fingerprinting refers to the process of identifying and gathering
specific information about a system or network to create a unique
traffic profile or “fingerprint”.

* The term "unique" needs to be interpreted:

* Family: this DHCP packet is generated by an iOS device.

* Application: this TLS flow is generated by the Trickbot malware.
* References

* https://medium.com/@nayanchaure601/os-fingerprinting-
ab5c4d70ec22

* https://medium.com/thg-tech-blog/fingerprinting-network-
packets-53ee32ddf07a

https://en.wikipedia.org/wiki/Trickbot
https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22
https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a

SharkFest’24 EUROPE
7=

How can | Use a Fingerprint?

* It can then be used to identify and categorise different devices,
applications, or users based on their specific characteristics and
behaviours.

* Typical use cases:

* Label network traffic with an application. Example: this HTTPS
connection was made by Apple Safari.

* Network segmentation: fingerprint DHCP packets to
automatically assign outdated Windows hosts to specific
VLANS.

» Cybersecurity: detect unusual behaviour or traffic patterns that
are unexpected for specific hosts (e.g. label a device as an iPad
and detect it uses services typical of Android devices)

EEE
. BE

What We'll Not Cover in This Talk SharkPest24 EUROPE ' 3N;

* There are two type of fingerprint
« Initial flow fingerprint (this talk)
» Post-connection behavioural fingerprint (not this talk)

» Behavioural analysis is used in particular in cybersecurity for detecting
malware.Tool/paper examples:

« Cisco Joy: https://github.com/cisco/joy
« Cisco Mercury: https://github.com/cisco/mercury
« Cloudflare, JA4 Signals, https://blog.cloudflare.com/ja4-signals/

e L. Deri, A. Sartiano, Monitoring loT Encrypted Traffic with Deep
Packet Inspection and Statistical Analysis, Proceedings of
CITST-2020

https://github.com/cisco/mercury
https://blog.cloudflare.com/ja4-signals/
http://luca.ntop.org/ICITST20.pdf
http://luca.ntop.org/ICITST20.pdf
http://luca.ntop.org/ICITST20.pdf
https://icitst.org/

SharkFest’24 EUROPE
7=

ACtive VS PaSSive [1 /2] Vienna, Austria * #sf24eu

Fingerprints can be determined using passive or active probing
techniques with usual pro (no traffic, no fingerprints) / cons (traffic is
injected in the network, hence we're not invisible).

. [] Ethernet: en0 (tep and port 443)
 Passive Am @ ENXE RewETe[, /= aqaitm
. . | tep.straam eq 36 and tls [X] o
Fingerprints are calculated by oS L — T—
. . . 1033 €.6071007 17.248.2€9.64 192.168.1.29 50383 TLS!
passively observing network traffic | v s oD B
H 1051 €.302018 17.248.209.64 192.168.1.29 50383 TLS!

and producing the fingerprint | s

according to "de-facto" techniques - —n
g q Extension: extended_master_secret (len=@)
Extension: renegotiation_infe (len=1)
(e g JA3/JA4) Extension: suppcrted_groups (len=12)
L] L] L] Extension: c:_pc‘.rt_formats (Lcn=2)
Extension: application_laye ol_negotiation {(len=14a)
Extens 10 status_request | Le1 S)

* As shown later, fingerprinting E e e

Exten ion: keyj'\are (len=43) x25519

encrypted traffic has interesting ,c

Extension: conpress certifi:ate (1en=3]
» sion. B e A -

features as ciphers and extensions e fiissttimmm ety
ease fingerprint CaICU|ati0n. ‘ [JA3 r:llstrxng /1 B -450. 430 sy.»—ww za 49:00—'19 99 ::z.uz 1910 ’I':ilb f‘

[JA3: 773966b0e7defa24a7 F2b3ebEIB5bTIT]

Active vs Passive [2/2] R-t 24 EURCFE oy

* Active fingerprinting is implemented by actively sending packets to
a target machine in order to receive a response.

* Port scan can be considered a basic fingerprinting technique as it
can be used to determine the operating system or read the version
of specific services (e.g. read the HTTP server version and use it to
find vulnerabilities) for attacking it.

* Some active fingerprinting tools:

* nmap a popular network scanner including host discovery and
service and operating system detection.

 JARM a TLS server fingerprinting application developed by
Salesforce. It provides the ability to identify and group malicious
TLS servers on the Internet.

EEE

https://nmap.org
https://github.com/salesforce/jarm

SharkFest’24 EUROPE
7=

Advantages and Limitations

 Passive fingerprinting is useful when conducting network
reconnaissance or monitoring network behaviour over extended
periods as it is:

* Non-intrusive nature
* Able to gather information without alerting the target.
* However, passive fingerprinting has limitations

* It may not provide as detailed or accurate information as active
fingerprinting since it relies solely on observed behaviours (e.g.
in TLS 1.3 server hello and certificate are encrypted and thus
they cannot be used albeit very useful).

* Some techniques may be subject to noise or interference,
impacting the reliability of the gathered information.

SharkFest’24 EUROPE
{ A

Fingerprinting Families: Can Happen Anywhere

End System

Application

Presentation

Session

Transport

Network

Data Link

Physical

App (RTP/RTSP fingerprint Meet vs Teams vs Zoom)
Network Library Fingerprinting (TLS/QUIC)

SNMP, NetBIOS

TCP/IP stack (Linux vs Win vs macOS)

IEEE 802.11

CDP Protocol, ARP

SharkFest’24 EUROPE
7=

Fi nge rpri nti ng MethOdS Vienna, Austria * #sf24eu

* Protocol Fingerprint

» Analyse a specific protocol (e.g. DHCP fingerprint, or TCP behaviour
for OS fingerprinting) in order to compute the expected fingerprint.
Example: Window hosts do not set the Timestamps option in TCP SYN
packets.

 Content Fingerprint

* Create the fingerprint based on the content of specific protocol.
Examples:

« HTTP User-Agent

 Android vs iOS vs Windows can be passively detected looking at
DNS domain names queries (e.g. thinkdifferent.us and
connectivitycheck.android.com)

» Firefox connects via TLS to firefox.settings.services.mozilla.com

OFEAD

http://thinkdifferent.us
http://connectivitycheck.android.com

SharkFest’24 EUROPE
7=

Using Fingerprinting in Real Life

» Browser fingerprinting
Collects information about a web browser and device where it's
running on including browser type, version, operating system, screen
resolution, installed plugins. This creates a unique “fingerprint” that
can be used to track the user across different sessions and websites.

* Policy Enforcement (OS/Device Fencing)
Restrict to specific VLANs/block old/specific devices/OSs by looking
at the device MAC address or initial DHCP request. This technique
plays an important role in securing OT (Operational Technology)
networks.

» Traffic Prioritisation
Disable specific traffic (e.g. Zoom Video) in case of limited available
bandwidth.

EEE

SharkFest’24 EUROPE _.-'%.._.
7 E

Fingerprinting in Cybersecurity

 Fingerprinting plays a crucial role in cyber security as it helps in
detecting threats, securing networks, and implementing targeted
security measures.

* Defenders:

« Match malware signatures (e.g. TLS fingerprint or SSL certificate
hash) and block malicious traffic.

* Prevents massive scanners from exploring network services.
* Attackers

 Use fingerprinting to detect flaws (e.g. CVEs) that can be used to
attack the system.

 During reconnaissance, identify application/OS version in order to
target attacks towards weak victims.

OFEAD

Fingerprints in MITRE SharkFest24 EUROPE 8

* MITRE Adversarial Tactics, Techniques, and Common Knowledge
(Att&ck) is a knowledge base that tracks cyber adversary tactics
and techniques. Fingerprinting is listed under Techniques /
Enterprise / System Information Discovery

« MITRE Common Attack Pattern Enumerations and Classifications
(CAPEC™) is dictionary of known
patterns of attack employed by ' Likelihood of Attack
adversaries to exploit known 7%
weaknesses in cyber-enabled ey Low
capabilities. CAPEC-224 covers ' Retationships

: L O Nature Type ID Name
flngerprl ntl ng - ParentOf y[:!; 312 Active OS Fingerprinting
ParentOf B 313 Passive OS Fingerprinting
ParentOf H 541 Application Fingerprinting
© view Name Top Level Categories
Domains of Attack Software
Mechanisms of Attack Collect and Analyze Information Eim

17 s
R

https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1082/
https://capec.mitre.org/data/definitions/224.html

SharkFest’24 EUROPE

False Positives vs False Negatives

» Definitions:

» False positives occur when a system or network is wrongly classified, leading to unnecessary security
measures or alerts.

» False negatives occur when a threat or vulnerability goes undetected due to an inaccurate or incomplete
fingerprint.
» Caveats:

« Traffic fingerprints are subject to false positives as sometimes it is very simple to mimic devices/apps in
order to circumvent protections.
Develop Window Help

» Fingerprints cannot be be 100% accurate: in the early -

Open Page With >

days of fingerprints, tools pretended to identify the exact (Y - >« (Automsticaly Chossn)
OS and version leading to long device databases. This is oo . sstanison
no longer possible due to network stack randomisation (TCP . | e ios 18— ehene
sequence numbers, MAC addresses, ephemeral ports etc). — R
wrvice Workers
» Two different devices/OSs/applications can share the o Ecovi oncromi (——— |
same/similar fingerprint. This is because they can use the Enter Responsive Dosign Mod x| Miroso Edge Windous
same TLS library or the same OS family in different Shaw et Insosctr N e i
flavours (iOS, vs iPad OS, vs macOS) ppaeiaatiod— ol - |
 Network traffic can be forged, so fingerprints need to be -] Featex=Windoms |
carefully used as attackers can inject packets to trick defenders. TR R

Legal and Ethical Considerations of Fingerprinting Techniques SMarestad EWhoPE 1%

* The collection and analysis of personal data, such as device or
browser fingerprints, may raise privacy concerns and require
compliance with relevant regulations.

* Organisations must ensure that their fingerprinting practices adhere
to applicable laws and regulations, while also respecting user

privacy and providing transparency in how their data is used and
protected.

* Tracking users using fingerprints is not desirable for users but
widely used in the industry. Companies are periodically introducing
new features to prevent/limit them: macOS, Android, and many
browsers (Safari, Firefox, Chrome) support "Do Not Track" feature,
even if it is often disabled by default (e.g. in Chrome)

OFEAD

Sha kF st’24 EUROPE _.-"*«.__
| b

Part Il
Passive Fingerprinting

SharkFest’24 EUROPE _.-'%.._.
7 E

Prior Art: Some OS Fingerprinting Tools

* Passive Fingerprinting
B . pOf
* prads (Passive Real-time Asset Detection System)
* SATORI: Python rewrite of passive OS fingerprinting tool.

* Active Fingerprinting
® ° nmap: network scanner featuring OS fingerprinting

m - Ettercap / NetworkMiner: network forensics tools able to
determine OS type/version

B . XProbe2: remote active operating system fingerprinting tool
B Not Actively Developed/Maintained

Status Stand-by/Maintenance
: -
W Actively Developed) %

https://lcamtuf.coredump.cx/p0f3/
https://github.com/gamelinux/prads
https://github.com/xnih/satori
https://nmap.org
https://www.ettercap-project.org
https://www.netresec.com/?page=NetworkMiner
https://github.com/binarytrails/xprobe2

pOf Overview [1/2] .

pOf generates TCP signatures in the format below that are then mapped against a
signature database (currently mostly outdated).

sig = ver:ittl:olen:mss:wsize,scale:olayout:quirks:pclass

ver
ittl
olen
mss
wsize
scale
olayout
quirks

pclass

signature for IPv4 ('4'), IPv6 ('6'), or both ('*').
initial TTL used by the 0S.

length of IPv4 options or IPv6 extension headers

maximum segment size, if specified in TCP options

TCP window size

window scaling factor, if specified in TCP options or '=*'
comma-delimited layout and ordering of TCP options, if any
comma-delimited properties and quirks (e.g. ENC or dont't
fragment) observed in IP or TCP

payload size classification: '0' for zero, '+' for non-zero,
'*' for any.

https://lcamtuf.coredump.cx/p0f3/README

pOf Overview [2/2] B e

Example of TCP signatures

.—[192.168.1.117/54868 —> 213.19.144.104/443 (syn) 1-

|

| client = 192.168.1.117/54868

| os = Mac 0S X

| dist =0

| params = generic fuzzy

| raw_sig = 4:64+0:0:1460:65535,5:mss,nop,ws,nop,nop,ts,sok,eol+1:df:0
|

Using the same approach pOf can also fingerprint application protocols such as HTTP.

.—[192.168.1.7/53251 —> 184.25.204.10/80 (http request)]-

|

| client = 192.168.1.7/53251

| app = 7?77

| lang = English

| params = none

| raw_sig = 1l:Host,Accept=[*/*],Accept-Language=[en-US;qg=1],Connection=[keep-

alive] ,Accept-Encoding=[gzip, deflatel],User-Agent:Accept-Charset,Keep-Alive:Argo/9.1.0
(iPhone; i0S 10.2; Scale/2.00) EEE

| -

SharkFest’24 EUROPE _.-'%.._.
7 E

HOW to Create a. Fingerprint Vienna, Austria * #sf24eu

As seen with pOf, creating a fingerprint is usually not rocket science
if the following principles are satisfied:

 Extract protocol/application unique characteristics.

* Ignore parameters that are random (e.g. TLS GREASE?),
request-specific (e.g. a hostname or the SNI).

* Concat parameters after transformations (e.g. sort) to make the
string fingerprint and avoid the fingerprint to be circumvented.

* Optionally hash the fingerprint to create a fixed-length
fingerprint string.

*GREASE (Generate Random Extensions And Sustain Extensibility), a mechanism to prevent
extensibility failures in the TLS ecosystem. It reserves a set of TLS protocol values that may be
advertised to ensure peers correctly handle unknown values.

EEE

SharkFest’24 EUROPE _.-'%.._.
7 E

HaSh FunCtionS Primer Vienna, Austria * #sf24eu

* A hash function is used to map arbitrary long data into a fixed size
("compress") string of bytes.

* Hash functions Properties:

* Uniformity: distribute uniformly data across a finite domain
(e.g. 0 ... 2"32-1).

* Collision Resistance: it should be difficult to find two different
inputs that produce the same hash value.

* Avalanche effect: a small change in the input should produce a
significantly different hash value.

Hash vs Raw Fingerprint Ry 2 EUROPE

o
Vienna, Austria * #sf24eu '. :

* Due to the nature of hash functions, fingerprints that use them are

designed for equality matchihg (e.g. identify malware X whenever
its fingerprint is detected injtraffic)

. JA3~ 35fa0a83ed66acbecll
' JA4 v

0 16d550ab
113i190800 9dc949149365 9718aa6741d9

JA4 r~ 113i190800_000a,002f,0035,009¢,009d,1301,1302,1303,c009,c00a,c012,c013,c014,c02b,c02c,c02f,c030,cca8,cc
.080...0805.0806.0401 ,0501,0601,0503,0603,0201,0203

and t13i190800_000a,0021,0035,009¢,009d,1301,1302,1303,c009,c00a,c012,c013,c014,c02b,c02c,c02f,c030,cca8,ccad_000

and not t13i190800_000a,002f, 0035,009¢,009d,1301,1302,1303,c009,c00a,c012,c013,c014,c02b,c02¢c,c02f c030,cca8 ccal

or 113i190800_000a,002f.0035,009¢,009d,1301,1302.1303,c009,c00a.c012,c013,c014,c02b,c02c,c02f c030 cca8,ccal_0005

or not t13i190800_000a,0021,0035,009¢,009d,1301,1302,1303,c009,c00a,c012,c013,c014,c02b,c02¢c,c02f,c030,cca8,ccad_0.

s natural =

ap data found

New Sessions Tab l

(Z' New Sessions Tab (with only this value)

OFEAD
T T T T 26 é%

Iy Copy value
s natural =

SharkFest’24 EUROPE
7=

(Un-hashed) Fingerprint Similarity

* Due to the nature of hash functions, only un-hashed fingerprints can be
searched for similarity matching as follows:

 Transform fingerprint string into a vector of numbers, a.k.a. word
embedding in Al parlance: "the representation is a real-valued
vector that encodes the meaning of the word in such a way that the
words that are closer in the vector space are expected to be similar
in meaning" (source Wikipedia).

* Use labelled data (e.g. pre-classified traffic) to create a database of
fingerprints and search for similarity (K-NN, K Nearest Neighbour).

* Vector databases are able to index numerical vectors and search
for similarity using approximate nearest neighbourhood algorithms
with the goal of finding the closest database match to the searched
vector.

OFEAD

https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1

Sha kF st’24 EUROPE _.-"*«.__
| b

Part Il
Protocol Fingerprinting

SharkFest’24 EUROPE

Fingerprints and Wireshark

In the following slides, we'll show some Lua scripts we developed
and that are available at

* https://github.com/ntop/nDPIl/tree/dev/wireshark

nDPI/ wireshark / (& Add file ~
~’ lucaderi Added further TCP fingerprints 9cOedcs - 5 days ago) History
Name Last commit message Last commit date

wireshark: lua: add script for QUIC fingerprints [... last month

O shrkfst_scripts fixed lua errors in non-iec104 packets (#1209) 3 years ago
M tshark Performed some grammar and typo fixes (#2511) 3 months ago
[README.md Performed some grammar and typo fixes (#2511) 3 months ago
download-fuzz-traces.sh shell: reformatted, fixed inspections, typos (#25... 3 months ago
Added further TCP fingerprints 5 days ago

TCP/IP Stack Fingerprinting [1/3] SharkPest24 EUROPE {3N;

* As discussed earlier, TCP/IP stack fingerprinting is one of the most
popular methods for detecting the OS from network traffic.

* Unfortunately there is_no single standard/representation hence there
are various formats produced by the many available fingerprint tools.

* As Wireshark does not natively features a TCP/IP stack fingerprint,
we have developed one as part of our contribution.

* The fingerprint format is the following
<TCP Flags>_<TTL>_<TCP Win>_SHA256(<Options Fingerprint>)

—— Normalize TTL *
ip_ttl = tonumber(ip_ttl) j

if(ip_ttl <= 32) then ip_ttl = 32

elseif(ip_ttl <= 64) then ip_ttl = 64 Note: _ o
elseif(ip_ttl <= 128) then ip_ttl = 128 - The fingerprint is computed on the SYN (req) packet
elseif(ip_ttl <= 192) then ip_ttl = 192 - For IPv6 we use HOp Limit instead of TTL

else ip_ttl = 255 end Elz=E
30 &

TCP/IP Stack Fingerprinting [2/3] - g

Frame 1: 62 bytes on wirz (496 bits), 62 bytes captured (496 bits)
Ethernel II, Src: HonHaiPrecis_6e:8b:24 (00:16:ce:6e:8b:24), Dsl: ASUSTekCOMPU_40:76:ef (00:15:02:40:76:efl)
Internet Protocol Version 4, Src: 192.163.0.114 (192.168.0.114), Dst: 192.168.€.193 (192.168.0.193)
Transmission Control Protocol, Src Port: 1137, Dst Port: 21, Seq: @, len: @
Sgurce Port: 1137
Destiraticn Port: 21
[Stream irdex: 0]
[Stream Packet Number: 1]
[Conversation completeness: Incomplete, DATA (15)]
[TCP Segment Len: @]
Sequence Number: @ (relative sequence number)
Sequence Number (raw): 3753095934
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: @
Acknowledgment number (raw): @
0111 = Header Length: 28 bytes (7)
Flags: 0x€02 (SYN)
Window: 1€384
[Calculated window size: 163R4]
Checksum: @x2963 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: 0
Options: (8 bytes), Maximum segment size, No-Operation (NOP), No-Operation (NOP), SACK permitted
TCP Option - Max.mum segnent size: 1460 bytes
TCP Option - No-Operation (NOP)
TCP Option - No-Operation (NOP)
TCP Option - SACK permitted
[Tinestamps]

<

0@ 15 f2 40 7€ =7 @D 16 «cc 6¢c 8b 24 @8 06 45 €0 @v n$ E

00 30 a7 €3 40 90 8D €6 (0 6€ cO a8 @Y 7Z cO a8 @ ’ r

)20 0@ c1 04 71 Q- seiep
0230 40 20 29 €3 @+)c EEEEEE

* Raw: 2_128_32768_0205B4010104
* Hashed: 2_128_32768_44bd01ba086e

TCP/IP Stack Fingerprinting [3/3] B e

Frame 85: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface unknown, id @
Ethernet II, Src: Intel_aB8:1f:ec (3c:a9:f4:aB:1f:ec), Dst: TechnicolorD_e@:86:62 (20:b8:01:e0:86:62)
Internet Protocol Version 4, Src: 192.168.1.128 (192.168.1.128), Dst: 89-96-168-17@.ip12.fastwebnet.it (89.96.108.170)
Transmission Control Protocol, Src Port: 35830, Dst Port: 8080, Seq: @, Len: @

Source Port: 35830

Destination Port: 8080

[Stream index: 5]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete, DATA (15)]

[TCP Segment Len: @]

Sequence Number: @ (relative sequence number)

Sequence Number (raw): 510107882

[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @

Acknowledgment number (raw): @

1010 = Header Length: 4@ bytes (18)

Flags: 0x002 (SYN)

Window: 64240

[Calculated window size: 6424@]

Checksum: 0x4bdl [unverified]

[Checksum Status: Unverified]

Urgent Pointer: o

Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale

[Timestamps]

[Time since first frame in this TCP stream: 0.000000000 seconds]
[Time since previous frame in this TCP stream: ©0.000000000 seconds]

ntop Extensions B

TCP Fingerprint: 2_64_64240_1a766bf8a57a

20 b@ 01 e@ 86 62 3c a9 f4 a8 1f ec 08 @@ 45 0@ 0oco[yf30 Booooc EE

00 3c db 5c 40 0@ 40 86 d7 2c cO a8 @1 80 59 6@ -<-\@'@ -,:--Y
6c aa 8b f6 1f 90 le 67 ab ea 00 00 00 00 a@ 02 1------ G "eesoonc
fa f@ 4b d1 00 00 02 04 05 b4 04 02 08 0a €4 36 - -K::::r ovvven 6

O A (o Fingerprint (ntop.tcp_fingerprint)

EI.“E'
Packets: 113 - Displayed: 5 (4.4%]) 32 .
[=]

TCP/IP Stack Fingerprinting Findings [1/2] SharkPest'24 EUROPE 3%

While studying the TCP fingerprints we have noted some facts.

Windows

* Does not use the timestamp (8) option.
* Has a default TTL of 128, vs 64 used on Linux etc.

iOS/iPadOS/macOS (Intel)
* Send SYN+ECE+CRW. Others (including macQOS Silicon) just SYN.
* Options (iIOS but not iPadOS) end & eion ~ vacinum scanens sise: 1906 e

with a double EOL. TCP Option - Window seate: § (multiply by 32

TCP Option - No-Operation (NOP)

TCP Option — No-Operation (NOP)

TCP Option - Timestamps: TSval 1148500268, TSecr @
TCP Option — SACK permitted

TCP Option - End of Option List (EOL)

TCP Option - End of Option List (EOL)

TCP/IP Stack Fingerprinting Findings [2/2] SharkPest2e Eunort (3%

* macOS/iPadOS/iOS are similar but not identical

» macOS Intel (SYN+ECE+CRW) and AppleSilicon (SYN) are different so you
can fingerprint the platform with the TCP/IP stack.

* iPadOS and iOS are similar but not identical.

A single OS/device can have multiple fingerprints. Example iPadOS:
194_64_0_d29295416479, 194_64_65535_d29295416479,
2_64_65535_d29295416479, 194_64_65535_d3a424420f2a

» Using the TCP/IP stack fingerprint it is possible to find out the OS of embedded
devices

Linux Wireless
Label Base Station

Android Scanner

V' 4 N
T
gE?
£
!h:
‘_a i
)
i —]
e

EEE

https://www.zebra.com/us/en/products/spec-sheets/mobile-computers/handheld/ps20.html
https://ir2s.fr/boutique/etiquettes-electroniques-eeg/peripheriques-et-accessoires-pricer/mini-base-station-pricer/
https://ir2s.fr/boutique/etiquettes-electroniques-eeg/peripheriques-et-accessoires-pricer/mini-base-station-pricer/

Side Effects of TCP/IP Stack Fingerprinting

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

Fingerprint produced by tools such as nmap and pOf were mostly created for identifying the host

OS, but they offers interesting side-properties....

Frame 1: B4 bytes on wire (512 bits), 64 bytes captured (512 bits) on intdlfece utund, id
Raw packel data AT
Internet Protocol Version 4, Src: 152.168.10.2 (192,168.10.2), Dst: pi3 (192.168.2.153)
Transmission Control Protocol, Src Port: 55119, Dst Fort: 22, Seq: 8, len: 0

Scurce Port: 55119

Destination Port: 22

[Strean index: @]

[Stream Packet Numger: 1]

[Conversation completeness: Incomolete, DATA (15)]

[TCP SegmenL Len: 8]

Sequence Number: © (relative ssquence number)

Sequence Number (raw): 567466627

[Next Sequence Numzer: 1 {relative secuence number)]|

Acknowl2dgment Numoer: @

Acknowledgnent nunoer (raw): 8

1€11 = Header Length: 44 bytes (11)

Flags: 9x002 [SYN)

Window: 63535

[Calculated wirdow size: 65535

Checksum: @xccSe [unverified)
[Checksum Status: Unverified]
Urgent Pointer: @

WireGuard

ESRAON \aa’ Sl) APPSRt ion (NOP), Window scale, No-Operation (NO
TCP Option - Maximum segnent size: 1382 oytes 4

, > TCP Option - No-Operation (NOP) F |

. TCP Option - Window scale: 5 (multiply by 64) &

" TCP Option —Nn—pkrhn P)
TCP Option - Timestamps: TSval 3011022357, TSecr @
TCP Option SACK permitted

TCP Option - End of Option List (EOL)
TCP Option — End of Option List (EOL)
[Timestamps|

Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on inf
Ethernet II, Src: Apple_a7:ee:cc [Sc:5B8:3c:a7:ee:ccl), Dst: CItohElectro_§ . T
Internel Protocol Version ¢, Src: 192.168.1.29 (192.168.1.29), DsL: 192.168.1.2 (162.168.1.2)
Transmission Control Protocol, Src Port: 55165, Dst Port: 22, Seq: @, Len: @

Source Port: 55125

Destination Fort: 22

[Strear index: 0]

[Stream Packet Number: 1]

[Conversation covpleteness: Tncomplete, DATA (15)]

[TCP Segment Len: @]

Sequence Number: © (relative seguence number)
Sequence Number (raw): 3757720203

INext Seguence Number: 1 (relative seguence number)]
Acknowledgnent Number: 0

Ackncwlecgrment number (rew): O

1011 = Header Length: 44 bytes (11)

Flags: 0x022 (SYN)

Window: 65535

[Calculated wirdow size: 65535]

Checksun: 2xB83a2 [unverified]

[Checksum Status: Unverified]

Urgert Pointer: 8

Plain Ethernet

PO R L bn (NOP), Window scale, Mo-Operation (B
1469 oytes

f; 1C7 option “Maximun segrent size:
. TCP Option - No-Operation (NOP)
§ TC? Option - Window 5cale: 6 (multiply by 64) W

TC? Option — No-Oparation (N3P)
TC? Optian - Timestamps: TSval 3422646187, TSecr @
TCP Option — SACK permitted

TC? Optian — End of Optian List (FOL)

TCP Option - End of Option List (EOL)

[Tinestamps|

Same client host (macOS) connected to two Raspberry Pi: one over a VPN (Wireguard)

and the other over plain Ethernet. Different MSS and Window Scale Factor

SharkFest’24 EUROPE

TCP/IP Stack Fingerprinting and Cybersecurity

Frame 1: 60 bytes on wire (480 bits), 6@ bytes captured (480
Ethernet II, Src: 76:ac:b9:35:30:da (76:ac:b9:35:3@0:da), Dst:
Internet Protocol Version 4, Src: 192.168.10.145 (192.168.10.
Transmission Control Protocol, Src Port: 49175, Dst Port: 88¢

Source Port: 49175

Destination Port: 8888

[Stream index: @]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete (35)]

[TCP Segment Len: @]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 253744456
[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @
Acknowledgment number (raw): @

0101 = Header Length: 20 bytes (5)
Flags: 8x002 (SYN)

Window: 65535

[Calculated window size: 65535]
Checksum: @x5297 [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @ k
[Timestamps] iy

-—

https://zmap.io/

Frame 1: 6@ bytes on wire (480 bits), 6@ bytes captured (488 bits)
Ethernet II, Src: 76:ac:b9:35:30:da (76:ac:b9:35:30:da), Dst: PCSSyste
Internet Protocol Version 4, Src: 192.168.10.145 (192.168.10.145), Dst
Transmission Control Protocol, Src Port: 46998, Dst Port: 8888, Seq: @

Source Port: 46998

Destination Port: 8888

[Stream index: @]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete (35)]

[TCP Segment Len: @]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 1163206847
[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: 0
Acknowledgment number (raw): 0

0101 = Header Length: 20 bytes (5)
Flags: @x@802 (SYN)

Window: 1024

[Calculated window size: 1024]
Checksum: @xd56b [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @ _g
[Timestamps] *ﬂhﬂ

https://github.com/robertdavidgraham/masscan

EzEmE
o BE
[=

SharkFest’24 EUROPE
| vl

HowTo Manipulate TCP Options

* Using sockets it is possible to manipulate a few (but not all) TCP
options using the setsockopt() call.

* All supported options are listed in /usr/include/netinet/tcp.h

* Example:

int mss = 576;
int result = setsockopt(lsock, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss));
if (result !=0) {

perror(0);

return 1;

}

SharkFest’24 EUROPE
7=

TLS/QUIC Fingerprinting [1/3]

 Contrary to the TCP/IP stack (usually) part of the kernel, for TLS/
QUIC encoder/decoder is implemented by a user-space library
hence every application sitting on the same OS can potentially use
different fingerprints.

TLS ClientHello Possible Clients True Client

Vv Secure Sockets Layer
¥ TLSvl Record Layer: Handshake Protocel: Client Hello

Content Type: Handshake (22) f \
Version: TLS 1.0 (exe3e1) -
Length: 214 OWSSL

“~ Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

Length: 218

Version: TLS 1.8 (8x@8301) Tj Opetl

Random - < r H SSL
Session ID Length: @ ./ (v:1.0.1x)

Cioher Suites Lenath: 120

{[Cipher Suites (6@ suites) "‘r g ///
Compression Methods Lengtht 1
Compression Methods (1 method) d

Fxtencinne A-n:oh- a0 /
Extension: ec_point_formats l \ J
Extension : elliptic_curves 7d

Extension: SessionTicket TLS

Extension: Heartbeat (

TLS/QUIC Fingerprinting [2/3] SharkPest'24 EUROPE 3%

* JA3 was the first popular fingerprint for SSL/TLS was invented by
Salesforce in 2017 with goal to produce fingerprints that could be
easily shared for threat intelligence.

 Two fingerprints: JA3 (client) and JA3S (server). They are created
concatenating the following fields in the same order they are
received in the TLS Client Hello (JA3) and TLS Server Hello (JA3S):

TLSVersion,Ciphers,Extensions,EllipticCurves,EllipticCurvePointFormats

skipping GREASE (Generate Random Extensions And Sustain
Extensibility) extensions.

* JA3 has been replaced by JA4 as in 2023 Google started to
randomise extensions to prevent JA3 detection thus jeopardising it.

EiEE
. B

https://github.com/salesforce/ja3?tab=readme-ov-file

TLS/QUIC Fingerprinting [3/3] SharkPest24 EUROPE 3 N;

* JA4 is the JA3 successor and it comes with additional fingerprints
named JA4+ (e.g. for TCP, HTTP, SSH...). While JA4 for client
fingerprinting has been released under BSD 3-Clause, all other are
patent pending and subject to license. Wireshark implements only
JA4.

JAA4: TLS Client Fingerprint

« Protocol: TCP = “t”, QUIC = “q"

e TLS version: 1.2= “12” 1.3 = “13"

« SNI: SNI present = “d” (to domain), no SNI = “i” (to IP)
« Number of cipher suites

« Number of extensions

» First ALPN value (00 if no ALPN)

JA4: 113d1516h2_8daaf6152771_02713d6af862

(| e Truncated SHA256 hash of the cipher suites, sorted (

» Truncated SHA256 hash of the extensions, sorted +,signature

algorithms k

JA4_a JA4_b JAd_c

https://github.com/FoxIO-LLC/ja4

JA3/JA4 in Wireshark Y24 EVHSRE

Internet Protocol Version 4, Src: 172.16.2.185 (172.16.2.185), Dst: 192.168.2.142 (192.168.2.142)
Transmission Control Protocol, Src Port: 52494, Dst Port: 3389, Seq: 20, Ack: 20, Len: 173
Transport Layer Security
TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.0 (@x0301)
Length: 168
Handshake Type: Client Hello (1)
Length: 164
Version: TLS 1.2 (0x0303)
Random: 5cef9e29f7050d16ala2391d64625681e3425a70bdd5045dbRa23d3db250dbe7
Session ID Length: @
Cipher Suites Length: 44
Cipher Suites (22 suites)
Compression Methods Length: 1
Compression Methods (1 method)
Extensions Length: 79
Extension: server_name (1len=18) name=192.168.2.142
Extension: supported_groups (len=8)
Extension: ec_point_formats (len=2)
Extension: signature_algorithms (len=18)
Extension: status_request (len=5)
Extension: signed_certificate_timestamp (len=0)
Extension: extended master_secret (len=8)
[JA4: t12d220700_@d4ca5d4ec72_3304d8368043]
[JA4_r: t12d220700_000a,002f,0035,083c,003d,009¢,009d,00ff, c008,c009,c00a,c012,c013,c014,c023,c024,¢c027,¢028,c02b,
[JA3 Fullstring: 771,255-49196-49195-49188-49187-49162-49161-49160-49200-49199-49192-49191-49172-49171-49178-157-1]
[JA3: e4d448cdfed6dc1243clebd26c7dacoal Ok A

SharkFest’24 EUROPE

Browser Fingerprints: <cipher list>

chrome 129 / brave 1.70.126 / opera 113 / edge 129
002f,0035,009¢,009d,1301,1302,1303,c013,c014,c02b,c02c,c02f,c030,cca8,cca

Android chrome 111
002f,0035,009¢,009d,1301,1302,1303,c013,c014,c02b,c02c,c02f,c030,cca8,cca9

macQOS firefox 131
002f,0035,009¢,009d,1301,1302,1303,c009,c00a,c013,c014,c02b,c02c,c02f,c030,cca8,cca9

Windows firefox 131
002f,0035,009¢,009d,1301,1302,1303,c009,c00a,c013,c014,c02b,c02c,c02f,c030,cca8,cca9d

safari iOS 15/18 - macOS
000a,002f,0035,009¢,009d,1301,1302,1303,c008,c009,c00a,c012,c013,c014,c02b,c02c,c02f,c030,cca8,cca9

SharkFest’24 EUROPE

Browser Fingerprints: <extensions list>

chrome 129 / brave 1.70.126 / opera 113 / edge 129
0005,000a,000b,000d,0012,0017,001b,0023,002b,002d,0033,4469,fe0d,ff0

Android chrome 111
0005,000a,000b,000d,0012,0015,0017,001b,0023,002b,002d,0033,4469,ff01

macQOS firefox 131
0005,000a,000b,000d,0017,001¢,0022,0023,002b,002d,0033,fe0d,ff01

Windows firefox 131
0005,000a,000b,000d,0017,001¢,0022,0029,002b,002d,0033,fe0d,ff01

safari iOS 15/18 - macOS
0005,000a,000b,000d,0012,0015,0017,001b,002b,002d,0033,ff01

SharkFest’24 EUROPE
| vl

Browser Fingerprints: <signatures list>

chrome 129 / brave 1.70.126 / opera 113 / edge 129
0403,0804,0401,0503,0805,0501,0806,0601

Android chrome 111
0403,0804,0401,0503,0805,0501,0806,0601

macOS firefox 131
0403,0503,0603,0804,0805,0806,0401,0501,0601,0203,0201

Windows firefox 131
0403,0503,0603,0804,0805,0806,0401,0501,0601,0203,0201

safari iOS 15/18 - macOS
0403,0804,0401,0503,0203,0805,0805,0501,0806,0601,0201

M

Repeated

Browser Fingerprints in Wireshark [1/2]

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

local ja4_db = {

/

Missing JA4 a

['02e81d9f7c9f_736b2aled4d3']
['07be0c029dc8_ad97e2351c08']
['07be0c029dc8_d267a5f792d4"]
['9a330963ad8f_c905abbc9856"']
['0a330963ad8f_c9eaec7dbabs’']
['168bb377f8c8_ale935682795"']
['24fc43eblc96_14788d8d241b']
['24fc43eblc96_14788d8d241b']
['24fc43eblc96_845d286b0d67']
['24fc43eblc96_845d286b0dé7']
['24fc43eb1c96_c5b8c5blcdeb']
['2a284e3b0c56_12b7alcb7c36']
['2a284e3b0c56_f05fdf8c38a9']
['2b729b4bf6f3_9e7b98%ebec8']
['39b11509324c_ab57fa081356"']
['39b11509324c_c905abbc9856"']
['39b11509324c_c9eaec7dbab4’']
['41f4eabbe9c2_06a4338d0495"']

'Chrome’',
'Firefox',
'Firefox',
'Chrome’',
'Chrome',
'"Anydesk’',
'Chrome’',
'Safari’',
'Chrome',
'Safari’,
'Safari’',
'Safari’,
'Safari’,
'IcedID',
'Chrome',
'Chrome’',
'Chrome',
'Chrome',

ndpi.lua

https://github.com/ntop/nDPI/blob/dev/wireshark/ndpi.lua

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

Browser Fingerprints in Wireshark [2/2]

M safari_i0$15.8.pcapng

4 = ® ™ e @ & TF

»
il
il

39

9.89176@

17.248.209.5
192.168.2.6

192.168.2.6

Cestinetion

17.248.209.66

mail-digitalocean.ntop.org

Infc
97 ITCP Retransmissio
5 51207 - 443 [ACK] !

78 [TCP Dup ACK 37#1

1.7573ez 78 51208 -+ 443 [SYN, |
40 1.789€28 mail-digitalocean.ntop.org 192.168.2.5 512eg TCP 74 443 - 51208 [SYN, .
41 1.794129 192.168.2.H mail-digitalocean.ntop.org 443 TCP Safari 656 51208 + 443 [ACK]
42 1.794132 192.168.2.6 meil-digitalocean.ntop.org 443 TLSv1.3 Safari 583 Client Hello (SNI=‘_I
43 1.824412 mail-digitalocean.ntop.org 162.768.2.5 51208 TCP Safari 65 443 » 51208 [ACK]
44 1.827846 mail-digitalocean.ntop.org 192.168.2.5 512e8 TLSv1.3 Safari 1505 Server Hello, Chan
45 1.82799% mail-digitalocean.ntop.org 192.168.2.5 512@& TLSv1.3 Safari 1595 Application Data
46 1.828€22 mail-digitalocean.ntop.org 192.168.2.5 512¢8 TLSv1.3 Safari 324 Application Dats, .
47 1.8321@¢ 192.168.2.6 mall-digitalocean.ntop.org 443 TCP Safari 65 51208 » 443 [ACK] !
48 1.832112 192.168.2.6 mail-digitalocean.ntop.org 443 TCP Safari 65 51208 - 443 [ACK] —
Frame 1: 78 bytes on wire (524 bits), 78 bytes captured (624 bits) on interface bridgel@e, id 0
Ethernet II, Src: @e:9c:18:95:77:c1 (0e:9c:18:95:77:cl), Dst: 9e:58:3c:7a:22:64 (9e:58:3c:7a:22:64)
Internet Protocol Version 4, Src: 192.168.2.6 (192.168.2.6), Dst: 17.248.2€9.66 (17.248.2€9.66)
Transmission Control Protocol, Src Port: 512@7, Dst Port: 443, Seq: 9, Len: @
O9e 58 3¢ 7a 22 64 Ge 9c 1B 95 77 ¢i 98 20 45 @0 Xez"d w o E
0@ 46 00 00 40 @@ 46 06 D04 cf c@ a8 02 26 11 8 @ -2e I
dl 42 ¢8 07 @1 bb 33 a5 ¢ f2 @@ 00 00 20 b0 c2 B :
ff ff 8¢ 93 DO €@ 62 04 25 b4 61 03 03 25 01 61
() 7 satari_iCS15.8.0capng Fackets: 76

Profile: Default

46

SharkFest’24 EUROPE _.-'%.._.
7 E

RDP (Remote Desktop Protocol) [1/3]

* RDP is a proprietary protocol created by Microsoft to graphically
connect to hosts on a LAN.

* Until version 5.2 (WinXP) the protocol was not encrypted, but today
almost all communications are over TLS.

* Until the protocol was unencrypted it was possible to create a
fingerprint using RDP attributes such screen resolution, keyboard
language etc., thing that is no longer possible with TLS.

* However JA4 can be the solution as we could use it to fingerprint
RDP traffic.

RDP (Remote Desktop Protocol) [2/3] L e

Source Destination Dport Protocol Length Infc
1 172.16.2.185 192.158.2.142 3389 TCP 68 52494 - 3389 [SYN, ECE, CWR] ¢
2 192.168.2.142 172.15.2.185 52494 TtP 56 3389 - 52494 [SVN ACK] Seq-b
3 1/2.16.2.185 192.168.2.142 3 ez g o P i i N : <
4 172.16.2.185 192.168.2.142 K Negotxate Pequest
[5 102.168.2.142 172.16.2.185
| 6 172.16.2.185 192.168.2.142 Sy -
| \ 7 172.16.2.185 192.168.2.142 T : - 217 Client Hello (SNI=]921165 2 14‘
| 8 192.168.2.142 172.15.2.185 ! 1223 Server Hello, Certlflcate, Ser
9 172.16.2.185 192.168.2.142 " g it 44 SR - |
10 172.16.2.185 192.168.2.142 33 89 TLSv1.2 178 Cl-ent Ke/ Exchanqe, (hanqe'.

Frame 7: 217 bytes on wire (1736 bits), 217 bytes captured (1736 bits)
Null/Loopback
Internet Protocol Version 4, Src: 172.16.2.185 (172.16.2.185), Dst: 192.163.2.142 (192.168.2.142)
Transmission Control Protocol, Src Port: 52494, Dst Port: 3389, Seq: 20, Ack: 20, Len: 173
| ~ Transport Layer Security
| TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
| Version: TLS 1.0 (0x0301)
| Length: 168
Handshake Protocol: Client Hello
| llandshake Type: Client Hello (1)
| Length: 1€4
Version: TLS 1.2 (0x0303]
Random: 5cef9e€2377050d16a1a2391d64625631€3425a70bdd5045cb0az3d3db250dbe7
Session ID Length: 9
Cipher Suites Length: 44
| Cipher Suites (22 suites)
| Compressicn Methods Length: 1
| Compressicn Methods (1 method)
Extensions Length: 79
Extension: server_nane (len=18) name=192.168.2.142
Extencinn: sunnnrted arouns (len=8)

RDP (Remote Desktop Protocol) [3/3] At .

Vienna, Austria « #sf24eu

* Thanks to JA4, it is possible to detect/fingerprint RDP attackers
* RDP client contacts many different hosts

* Often short-living sessions (host scan)
« Example of RDP scan/attacks detected on a service provider

network:

Time

First packet: 2024-10-18 21:53:19

Last packet: 2024-10-18 21:53:46

Elapsed: 00:00:26

JA4 # Flows

112128060@0_bbd4f008d9b2_f28add8e7af0 2328 [57.3 %]
1101410400_eeh9a@269cf9_282111336259 1192 [29.4 %]
1121210600_76e208dd3e22_f28add8e7af0o 238 [5.9 %]
1121080500_723ebca51f63_dccb52d5fcaf 158 [3.9 %]
1101550400_59f835f43fe7_282111336259 134 [3.3 %]

Vienna, Austria « #sf24eu

SharkFest’24 EUROPE
7=

« HASSH is a network fingerprinting standard created by Salesforce
which can be used to identify specific client and server SSH
implementations.

* Fingerprints can be easily stored, searched and shared in the form
of an MD5 fingerprint.

* They can be computed for both client and server and are useful to
detect changes in SSH client software/configuration.

* As with JA4:

* HASSH defines two fingerprints: one flow SSH client, and one
for SSH server.

* JA4+ includes a patented fingerprint names JA4SSH whose
goal is to fingerprint traffic rather than client/server.

EiEE
. B

https://github.com/salesforce/hassh

SSH Negotiation .

Client Server

TCP 3 way handshake

Server Identification string example
+ “SSH-2.0-OpenSSH_7.2p2 Ubuntu-subuntu2.4™

Client Identification string example
“SS8H-2.0-OpenSSH_6.7p1 Raspbian-5+deb8ud

Clear text packets

SSH_MSG_KEXINIT

T Kex Fyl Enc Mac Comp ﬂ

SSH_MSG_KEXINIT N “hassh”)

Kex |Hkey| Enc Mac Comp |Lang)

“hasshServer”]

Key exchange

Encrypted packets

: DieAn)
https://github.com/salesforce/hassh 51 %

HASSH Client Fingerprint L e

Function

Key Exchange
methods

Encryption

Message
Authentication

Compression

Algorithms seen in SSH_MSG_KEXINIT packets

curve25519-sha256@libssh.org,diffie-hellman-group-exchange-sha256,ecdh-sha2-
nistp521,ecdh-sha2-nistp384, ecdh-sha2-nistp256,diffie-hellman—-group-exchange-
shal,diffie-hellman—-groupl-shal,diffie-hellman-groupl4-shal,diffie-hellman-groupl14-
sha256,diffie-hellman—groupl5-sha512,diffie-hellman-groupl6-sha512,diffie-hellman-
groupl7-sha512,diffie-hellman-group18-sha512,diffie-hellman-group1l4-
sha256@ssh.com,diffie-hellman-group15-sha256,diffie-hellman-groupl5-
sha256@ssh.com,diffie-hellman-group15-sha384@ssh. com,diffie-hellman-group16—
sha256,diffie-hellman—groupl6-sha384@ssh.com,diffie-hellman-groupl6-
sha512@ssh.com,diffie-hellman-group18-sha512@ssh.com

aes128-cbc,aes128-ctr,aes192-cbc,aes192-ctr,aes256-cbc,aes256-ctr,blowfish-
cbc,blowfish—-ctr,cast128-cbc,cast128-ctr,idea-cbc,idea—ctr, serpent128-cbc,serpent128-
ctr,serpent192-cbc,serpent192-ctr, serpent256-cbc, serpent256-ctr,3des—cbc, 3des—
ctr,twofish128-cbc, twofish128-ctr, twofish192-cbc, twofish192-ctr, twofish256-

cbc, twofish256-ctr, twofish—-cbc,arcfour,arcfourl28,arcfour256

hmac-shal, hmac-shal-96, hmac-md5, hmac-md5-96, hmac-sha2-256 , hmac-sha2-512

zlib@openssh. com,zlib, none

Concatenating these algorithms together with a delimiter of ;" and MD5 the
resulting string, gives the hassh client fingerprint.

52

HASSH Server Fingerprint L e

Function Algorithms seen in SSH_MSG_KEXINIT packets
Key Exchange diffie—-hellman-group—exchange-sha256,diffie-hellman-group-exchange-shal,diffie-
methods hellman-groupl4-shal,diffie-hellman-groupl-shal
. aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfourl28,aes128-cbc,3des-cbc,blowfish-
Encryption

cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour, rijndael-cbc@lysator. liu.se

Message hmac-md5, hmac-shal, umac-64@openssh.com, hmac-ripemd160, hmac-
Authentication ripemd160@openssh.com, hmac-shal-96, hmac-md5-96

Compression none, zlib@openssh.com

At https://github.com/0x4D31/hassh-utils/blob/master/hasshdb you can find a
large SSH fingerprint database.

Reserved: AOARAAAN

[hasshAlgorithns [.]: curve25519-sna256,curve25519-shaz56@libssh.org,ecch-sna2-nistp256,ec
[hassh: ec737Ecla92f5a8cde’a8b7alddf33d1]

acding String: €0202002

[Sequence numder: @]

° AS Of tOday, WireShark [Direction: client-tc-server]
supports HASSH (ssh.kex.hassh). @ 7 e e a6 stcaze 7561632 persanec onumac.

31 32 38 40 of 7@ €5 6 73 73 63 2e 63 6T 6d 2¢ 128g¢open ssh.com,
68 6d 61 63 2d 73 €8 61 32 2d 32 35 36 2c 68 6d hmac-sha 2-256, hm
6 61 63 2d 73 6B 61 32 2d 35 31 32 2c G8 6d 61 63 ac-shaz- 512,hnac
2d 73 68 61 31 9@ 20 00 1la €e 6f be 65 2¢ 7a 6c -shal--- -none,zl
69 62 40 6f 70 65 Ee 73 73 €8 22 63 5f 6d 2c Ta ib@opens sh.con,z
@ 6c A9 A2 @GP 0A A® 1a 6e Hf €e 65 2c 7a 6c 69 62 Lib++++n one,21ib
¢ 48 61 70 65 6e 73 73 68 2¢ €3 6f 6d 2¢ 7a 6C 69 @openssh .com,zli
62 00 20 G0 0D 9@ 20 @O 20 €0 00 0C 20 @O 00 0@ Devoreer vovvenen

; 08 20 -
s
EiEm
@ 7 nassh(sshkexhassk) Fac 53 s
[=

https://github.com/0x4D31/hassh-utils/blob/master/hasshdb

What Problems HASSH Addresses ? [1/2] At .

 HASSH adds contextual information to packet header information.
* The HASSH client is used to fingerprint the client, and thus:
* Allow blocking clients outside of the "allowed set”.

* Detect exfiltration if data when using SSH clients with multiple
distinct hashes.

* NAT won'’t shield different SSH clients as they can now be
detected with this technique.

* |dentify specific client versions.

What Problems HASSH Addresses ? [2/2] At .

* The HASSH server can be used to detect if the server configuration
is insecure or different from the past.

* In loT or datacenter where configurations are static (or at least
under strict control), fingerprint should be predictable.

« Same as HASSH client it can be used to block insecure servers, or
detect unexpected changes in server configuration.

Evading SSH Fingerprinting (HASSH) with Arbitrary Ciphers e sae o

27 4.720023 99,229,176.142 134.209,115,118 TCP 68 57687 -+ 22 [ACK] Seq=1138 Ack=1438 Win=130944 Len=0 TSval=1151712310 TSecr=3496262308

28 4,725779 99.229.176.142 134.209.115,118 TCP 68 57687 -+ 22 [FIN, ACK] Seq=1138 Ack=1438 Win=131072 Len=0 TSval=1151712310 TSecr=3496262308

29 4,728737 134.209.115.118 99.229.176.142 TCP 68 22 -~ 57687 [FIN, ACK] Seq=1438 Ack=113% Win=3@848 Len=0 TSval=3496262355 TSecr=1151712310 x|
39 4.769442 99.229.176.142 134.209.115.11B TCP 68 57687 ~ 22 [ACK] Seq=1139 Ack=1439 Win=131872 Len=@ TSval=1151712356 TSecr=3496262355

Frame 12: 964 bytes on wire (7712 bits), 964 bytes captured (7712 bits)
Linux cooked capture vl
Internet Protocal Version 4, Src: 99.229.176.142, Dst: 134.209.115.118
Transmission Control Protocol, Src Port: 57687, Dst Port: 22, Seq: 18, Ack: 22, Len: 896
SSH Protocol
SSH Version 2 (encryption:aesl28-ctr mac:hmac-sha2-256 compression:none)
Packet Length: 892
Padding Length: 4
Key Exchange (method:curve25519-sha256@libssh.org)
Message Code: Key Exchange Init (2@)
Algarithms
Cookie: ddfd3629bfe61c5ae790c727958ef2ca
kex_algorithms length: 272
kex_algorithms string [truncated]: curve25518-sha256@Libssh.org,ecdh-sha2-nistp256,ecdn-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-groupl6-sha512,diffie-hellman-group-exchange-sha25
server_host_key algorithms length: 87
server_host_key algorithms string: ssh-ed25519,ecdsa-sha?-nistp256,ecdsa-sha?-nistp384,ecdsa-shaz-nistp521,ssh-rsa,ssh-dss 2
encryption_algorithms_client_to_server length: 98
encryption_algorithms_client_to_server string: aesl28-ctr,aesl92-ctr,aes256-ctr,aes128-chc,aes192-cbc,aes256-cbe,blowfish-cbe, 3des—c :.07ec02bc47
encryption_algorithms_server_to_client length: 98 y Ssaiini
encryption_algorithms_server_to_client string: aesl28-ctr,aesl92-ctr,aes256-ctr,aes128-cbc,aes192-cbc,aes256-che, blowfish-cbe,3des-cbe, 87eco2bc47
mac_algorithms_client_to_server length: 131
mac_algorithms_client_to_server string: hmac-sha2-256,hmac-sha2?-512, hmac-sha?-256-etm@openssh. com, hmac-sha2-512-etm@openssh.com, hmac-shal, hmac-md5, hmac-shal-96, hmac-md5-86
mac_algarithms_server_to_client length: 131
mac_algerithms_server_to_client string: hmac-sha2-256, hmac-sha2-512, hmac-sha2-256-etm@cpenssh. com, hmac-sha2-512-etm@openssh. com, hmac-shal, hmac-md5, hmac-shal-9&, hmac-md5-26
compression_algorithms_client_to_server length: 4
compression_algorithms_client_to_server string: none
compression_algorithms_server_to_client length: 4
compression_algorithms_server_to_client string: none

As with JA3, SSH implementations advertise random encryption algorithms in order
to evade fingerprinting

EEE

https://blog.lethalbit.com/evading-ssh-fingerprinting-hassh-with-custom-ciphers/

JASSH et

JA4SSH: SSH Traffic Fingerprint

(fingerprints SSH sessions)

(runs every 200 SSH packets by default)
Mode of Client Packet Length

Mode of Server Packet Length

SSH packets sent from client

SSH packets sent from server

Bare ACKs sent from client

Bare ACKs sent from server

Bare ACKs are sent from the initiating side

JA4SSH=c36s36_c55s75 c70s0 (6g. side doing the typing)

a b C

e Interactive SSH Session = ¢36s36_c51s80 c69s0
Padded to 36 (minimum length over chacha20-poly1305), all ACKs from client

e Reverse SSH Session = €76s76_c71s59_c0@s70
Double Padded to 76, all ACKs from server

e WinSCP File Transfer to Client = 11251460 c0s179 c21s0
Max window from server 1460, all ACKs from client

https://github.com/FoxIO-LLC/ja4/blob/main/technical_details/README.md

DHCP [1/2]

User Dalagram Pr, (&3 2 Par L. 68, Dsl Port: 67

* DHCP does not have a resaoe ol oottt ()

"standard" fingerprint as JA4 or g sooress v 6

Transaction ID: 0x39776de7

HASSH, but clients can be easily s et &

Bootp flags: @x0000 (Unicast)

- - - Client IP address: 0.0.0.0 (0.0.0.0)
fingerprinted analysing DHCP Your (client) I5 address: 0.0.6.0 (6.0.0.6)
Next server IP address: 0.0.0.0 (0.0.0.90)
0.0 (0.0.0.90)

Options Relay agent IP address: 0.0.

Client MAC address: Apple_b9:f5:4f (e4:50:eb:b9:f5:4f)
Client hardware address padding: 00000000000000000000

* In particular it is possible to sot T e ot given
list all options id's and list e
the parameters request list.

" Option: (55) Parameter Request List
Length: 12
Parameter Request List Item: (1) Subnet Mask
Parameter Request List Item: (121) Classless Static Route
Parameter Request List Item: (3) Router
Parameter Request List Item: (6) Domain Name Server
Parameter Request List Item: (15) Domain Name
Parameter Request List Item: (108) IPv6-Only Preferred
Parameter Request List Item: (114) DHCP Captive-Porzal
Parameter Request List Item: (119) Domain Search
Parameter Request List Item: (252) Private/Proxy autodiscovery
Parameter Request List Item: (95) LDAP [TODO:RFC3679]
Parameter Request List Ttem: (44) NetBTI0S over TCP/IP Name Server
Parameter Request List Item: (46) Ne:BIOS over TCP/IP Node Type
iop: . i DH o e Size _ _ g _

S " P _T ~ g -

H 0 - J N —
Option: (50) Requested IP Address (192.168.16.41)
Option: (51) IP Address Lease Time

Option: (12) Host Name EzE
Option: (255) End 58 =
Padding: 00000000000000 =

DHCP [2/2] B e

We have fingerprinted popular DHCP devices and embedded them in the ndpi.lua
script.

local fingeprints = {
['@17903060F77FC'] = 'i0S’',
['@17903060F77FC5F2C2E'] = 'macQS’',
['@103060F775FFC2C2E2F'] = 'macQS',
['017903060F6C7277FCS5F2C2E'] = 'mac0S’',
['@103060F775FFC2C2E'] = 'Mac0S',

['6603010FAC2C51452B1242439687'] = 'HP Laserlet', 00 Whreshark - DHCP Flngerprinting

['0603010F42438D2COC'] = 'HP LaserJet',

['01032C06070COF16363A3B45122B775199%9A'] = 'HP Laserlet', Client Known Fingernrint

['660FFC'] = 'Xerox Printer' ed:50:eb:b9: f5:4f 0179€3660F6C7277FCSF2C2E [mac0S]
- r

['@103063633'] = 'Windows',
['@163060F1F212B2C2E2F79F9FC'] = 'Windows',
['8103060F1F212B2C2E2F7779F9FC'] = 'Windows',
['010206PCOF1AL1C79032128292A77F9FC11'] = 'Windows',
['@10F03062C2E2F1F2179F92B'] = 'Windows',

) ' s . Ethernet II, Src: Apple_a7:ee:cc (9c:58:3c:a7:e2:cc), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
['0163060COF1C2A"'] = 'Linux', . Internet Protocol Version 4, Src: 0.0.0.0 (0.0.2.0), Dst: broadcasthost (255.255.255.255)
['@11C02030FR6770C2C2F1A792A79F921FC2A'] = 'Linux' ' User Datagram Protocol, Src Port: 68, Dst Port: 67

['0102030F060C2C'] = 'Apple AirPort',) Dynamic Host Configuration Protocol (Recuest)

- . 7 ntop Extensions
} ['01792103060F1C333A3B77'] = 'Android’, un-m-b DHCP Fingerprint: 017903060F6C7277FC5F2C2E
Euuq
- B
=]

B

Part IV

Obfuscated Protocols
Fingerprinting

Obfuscated traffic SharkPest24 EUROPE

* Traffic content is almost always encrypted, but traffic type/classification (or some traffic
characteristics) can be usually inferred anyway

* This is basically the goal of any DPI/Network Visibility/Firewall system

* Techniques to avoid detection are often called "obfuscation": the general idea is to make the
traffic "look like" something else, hiding its true nature

* if it works, the obfuscated traffic will be detected as something else (different traffic
type or classification): the DPI system has been fooled/bypassed

* blending in with standard and allowed traffic, it increases DPI systems error rate and
operational costs in computation, time and money.

* There are two general strategies to obfuscate the traffic:
* to mimic some content that it is allowed, like TLS
« example: encapsulate the traffic in a TLS tunnel

* to randomize the flow content, making it dissimilar to anything that it is specifically
blocked

« example: (fully) encrypt (again) the traffic, removing any plaintext info (or magic
word or common patterns)
[Elza[w]
o B

https://www.bamsoftware.com/talks/thesis-proposal.pdf

SharkFest’24 EUROPE

Obfuscated traffic: general schema

DPI happens here

Original/Non obfuscated traffic Obfuscated traffic Non obfuscated traffic

* Is a VPN an obfuscation technique? No, it isn't, even if it does "hide" your traffic *content*
* All VPN services/apps (with their default configuration) are a simple wrapper over OpenVPN, Wireguard or IPSec
* all of these protocols are easily detectable
* Using a VPN you "hide" your traffic content, but you don't obfuscate it
* Sometimes you might want to obfuscate the VPN traffic itself!
* All VPN apps have at least one option to enable some kind of obfuscation
* Example: 110_general_openvpn_over_tls.pcapng
* Example: 111_general_shadowsocks.pcapng

SharkFest’24 EUROPE &

Fingerprints of obfuscated traffic

* We will show you that even obfuscated traffic can be easily fingerprinted/identified

* We might not be able to detect the "real" (i.e. original) traffic type, but it is usually enough to
know that some kind of obfuscated algorithm has been used

» Obfuscated traffic is (very) suspicious per se
» Compared to the fingerprints Luca talked about, these new fingerprints:
* are still cheap to calculate, even if they require more than 1 packet per flow
* might be a more complex object than a simple string or number
* Three major user cases:
* Fingerprint of obfuscated OpenVPN
* Fingerprint of obfuscated TLS handshakes
* Fingerprint of Fully Encrypted Protocols

* We implemented these logics in nDPI in an efficient way, allowing us to identify (some) obfuscated
flows with good precision and low false positives rates, using minimum resources, at scale and in
real time with live traffic

* Wireshark (via extcap) will be used to show the final results and the raw fingerprints; these
fields can be filtered or you can collect some statistics about them, as usual

OFEAD

SharkFest’24 EUROPE

Obfuscated traffic: disclaimer

* Detecting obfuscated traffic might be a sensitive topic; different people might have
different opinions about it. However:

* the techniques we will talk about are based on academic papers publicly
available and presented at major conferences

* responsible disclosure: all involved parties have been notified before papers
publication

* We are not the authors of these papers

* In our tests we used some VPN apps and some V2Ray protocols (ShadowSocks,
VMess, Trojan,...) with their default/simplest configurations and without enabling
advance features.

* The original papers have some considerations/results about these more
complex configurations.

* Tradeoff between ease of deployment and obfuscation efficiency
* V2Ray is still (one of) the best choice if you need to obfuscate your own traffic

EEE

https://www.v2ray.com/en/index.html

SharkFest’24 EUROPE
| vl

Fingerprint of OpenVPN

* OpenVPN is Open to VPN Fingerprinting, Xue et al.,USENIX
Security '31, 2022

https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen

OpenVPN: overview el 6.

 Client | Server
° One Of the most used (and Old) protocol for ‘ClientReset Op = {1, 7, 10} i
Creatlng VPN < ServerResetOp-{z.S}.
* A dozen of different messages; the first < il >

Control Op = {4}

A
v

byte of the OpenVPN header is the
message type (i.e. opcode)
Data Op = {6, 9}

* Initial handshake with a TLS-style Data Op = {6, 9}
exchange of key materials

* Example: 120_openvpn_plain_tcp.pcapng

A
v

E_ T
E- P

E;EE

Ope NnVPN: XOR patch SharkFest'24 'EUfROPE

* OpenVPN protocol is easily detectable (via message types)

« In 2013, a patch adding obfuscation capability to OpenVPN has been
proposed

« Simply XOR with a shared key

« Not accepted by upstream maintainers: no proper evaluation of security
risks/claims

» Nonetheless, in the following years this patch has been included in a lot of
different proprietary VPN apps

« At least from 2020 it is well known that this patch has a fatal flow: the first byte
of each message is always encrypted with the same byte of the key.
Therefore, in a connection, the same opcode would be always mapped/
encrypted to the same value

» The paper (from 2022) found that 34 out of 41 “obfuscated” VPN
configurations are vulnerable to this (and similar) "bug"

https://github.com/clayface/openvpn_xorpatch
https://tunnelblick.net/cOpenvpn_xorpatch.html
https://github.com/clayface/openvpn_xorpatch/issues/16#issuecomment-700089581

SharkFest’24 EUROPE _.-'%.._.
7 E

OpenVPN: fingerprint

» Basic idea;

* The set of the opcodes of the first packets of a standard OpenVPN
flow is quite peculiar:

* one (different) opcode (i.e. resets) per direction only at the very
beginning

* real handshake with a few different opcodes (i.e. ack/control/...)

 from one packet forward, the opcode is always the same (i.e.
data)

* Because of the XOR patch flaw, an obfuscated OpenVPN flow has a
"similar" set, i.e. a set with the same cardinality

* The fingerprint is the ordered collection of the first byte of the initial packets
* Example: 121_openvpn_udp_obfuscated.pcapng (with and without extcap)

OFEAD

OpenVPN' results SharkFest’24 EUROPE

* We tested all the VPN apps vulnerable to this heuristic according to
the original paper

* All of them (but one) are still vulnerable
* Our implementation detect these flows with TPR = ~100%
* What about false positives?

OpenVPN: results Br24 EUROPE gl

Controlled traffic without Matches/Total flows |Real traffic from an ISP Matches/Total
obfuscated OpenVPN flows flows

Firefox (random sites 0/4053 CP 0/544066
Chrome (random sites 0/6746 UDP 20/559791
Android (random apps, web, 0/3315 TCP (443 only) 4/3429006
games, calls
Edge (random sites 0/7372 UDP (no 53, 443, 2152, 4500 40/298849
iPhone (random apps, web 0/3224 UDP(443 onl 25/988079
Office span port (Win, Linux, 0/3968 STUN 0/106488
VM, Phones

|IPv6 (no 53, 443 2/879107
RTP and DTLS 6/8452

* FPR (worst case) =
* ~1*107-5 (with 10 pkts per flow)
* ~3*107-6 (with 20 pkts per flow)

SharkFest’24 EUROPE

Fingerprint of obfuscated TLS

* Fingerprinting Obfuscated Proxy Traffic with Encapsulated TLS
Handshakes, Xue et al.,USENIX 24

https://www.usenix.org/conference/usenixsecurity24/presentation/xue-fingerprinting
https://www.usenix.org/conference/usenixsecurity24/presentation/xue-fingerprinting

TLS: handshake SharkPest'24 EUROPE {3\

« Different messages ' Client | Server | Client | Tsi3 [Server

exchanged in multiples @ crenver . @ oo
TCP paCketS Server Hello Server Hello

Certificate EncryptedExtensions

® BurSt/fllg ht: ConseCUtlve ServerKeyExchange

\4

A

A
o]
A
o}

Certificate & CertificateVerify

A A
o0
N
A A
o0
~

paCketS Sent In the - ServerHeIIoDone. - Finished.
Same dlreCthn .ClientKeyExchange _ Finished N
" " . .ChangeCipherSpec ; < Application Data ;
* Only "full" handshake, JFinsned ,
No session resumption) crargeconerescnarge,

or ORTT sy @

Application Data

A

A
v

SharkFest’24 EUROPE # &

Obfuscated TLS fingerprinting

* Terminology:

* "packets/bytes distribution" == distribution/histogram of packets
size and number

* "burst/flight distribution" == packets/bytes distribution of all the
packets belonging to the same burst

* Basic idea:

* the packets/bytes distribution of a (plain) TLS handshake (i.e.
bursts distribution) is quite unique

* this fingerprint is still detectable if the handshake is encrypted/
proxied/obfuscated/tunneled

* The fingerprint is the packets/bytes distribution of the initial bursts

EEE

0o SharkFest’24 EUROPE
TLS: StatIStICS a\/rienn:sAustria-#sf24eu

Client Helln size distribition (2022) Client Hello size distribition (2074)
[-?20K Hows: T1S version interred via "supparted_versions® extension) (~2M fows; TLS version inferred via "support=d_versions" extension)
HU.L0% 00.003¢
517 =512 + 5 (header)
7.00% / 0.00%¢
6U.00% 62.009¢
50.00% 5.
—TLE12 TLS12
41.00% —TLs 13 4100 — L5132
N.00% 30.009¢
x.00% Session Resumption woox Session Resumption + ECH
10.00% 10.009¢ P Q
0.00% wl i i e 0.009¢ _.M— A chnanl - J
100 200 30U 400 500 60U 0 W 200 WU 300 50U 500 i 200 900 1000
Jyles Tyles

https://mailarchive.ietf.org/arch/msg/tls/8wXwhM1d5WSmROHFSgrTyFmWN2o/

SharkFest’24 EUROPE
| vl

T LS : n eW fe atu reS Vienna, Austria « #sf24eu

* CH size and its characteristics haven't really changed for a long
time, since 2013

* In the last years, two new features have been developed and also
deployed:

* Post-Quantum algorithms
* Encrypted Client Hello
* These two extensions have a significant impact on CH size

SharkFest’24 EUROPE

TLS: POSt Quantum algorithms Vienna, Austria « #sf24eu

* |dea: deploy today new cryptographic algorithms secure against
future quantum computers

* For details: "Real-world post-quantum TLS in Wireshark" by
Peter Wu, SharkFestUS-24

* Effects: CHs (and SHs) are significant bigger (~1200 more bytes)
because of the new crypto key material

TLS: Encrypted Client Hello SharkFest24 EUROPE 13N

* ClientHello messages are sent in cleartext. ECH is a new TLS
extension allowing sensitive information (SNI, ALPNSs) to be sent
"encrypted" by the client

* Goal: to ensure that connections to servers/sites in the same
anonymity set are indistinguishable from one another.

 Basically some kind of "legal"/"allowed" domain fronting

* Two CHs are involved:
* Quter CH: in cleartext, with a SNI referring to the anonymity set
* Inner CH: encrypted, with the "real"/hidden SNI

EEE

TLS: Encrypted Client Hello SharkPest'24 EUROPE {3\

* The fact that ECH is being used is still visible

 Greasing: clients might send dummy/fake ECH extension that
is ignored by the server but it might help deployment ("don't
stick out") and avoid ossification.

* For the purposes of this talk: CH with ECH is a little bit bigger (~150
more bytes)

* Wireshark and TLS libraries don't decrypt ECH, yet. Preliminary
patches from Yaroslav Rosomakho, @ZScaler

* Example: 130_ech.pcap (with standard and wireshark-echkeylog)
« Example: 131_firefox_ech_pqg_all_combinations.pcap

OFEAD

https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

TLS: statistics

Server Hello size distribution

(~1.2M flows)

12.00%

10.00%

8.00%

—TLS 1.2
—TLS 1.3
6.00%

4.00%

2.00%

- 0.00%

Bytes

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

Certificates size distribution

(~400K flows; al TLS versions < 1.3; no self-signed certificates)

| TV AILAJ ..IlA . J

1500 2500 3500 4500 5500 6500 7500

Bytes

0o SharkFest’24 EUROPE
TLS: StatIStICS a\/rienn:sAustria-#sf24eu

First 4 flights distribution (TLS 1.2 and 1.3) - Bytes

(~1.1M flows; only flows with data on all 4 flights)
55.00%
50.00%
45.00%

40.00%

35.00% e Flight 1 (C —S)
— e Flight 2 (S - C)

Flight 3 (C ~S)
25.00% e Flight 4 (S —.C)

20.00%
15.00%
10.00%

5.00%

0.00% P 11l..1L

H . SharkFest’24 EUROPE
TLS: StatIStICS aVrienn:sAustria-#sf24eu i

First 4 flights distribution (TLS 1.2 and 1.3) - Packets

(~1,1M flows; only flows with data on all 4 flights)

100.00%
90.00%
80.00%
70.00% W Flight 1 (C - S)
60.00% ® Flight 2 (S —~C)

50.00% Flight 3 (C —S)
40.00% ® Flight 4 (S ~C)
30.00%
20.00% I J
oot — II.I_ —

1 2 3 4 5

6 7
Packets

Obfuscated TLS SharkFest'24 EUROPE

 TLS flows have a quite unique fingerprint about the packets/bytes
distributions of their handshake

« The common idea underpinning all forms of proxying and tunneling is that
of nested protocol stacks, where one protocol stack is encapsulated within
the payload of another protocol

* This fingerprint is still detectable even if the TLS handshake is encrypted/
obfuscated/encapsulated

 Core reason: tunneling/encryption doesn't change packet timing/
direction and size (too much, at least); it doesn't usually add/remove

packets
» This fingerprint is detectable R v B S
regardless of the specific obfuscation — Flcampesspis o BN 5o,
technic: it is protocol agnostic B R

OFEAD

Fingerprint before/after obfuscation

SharkFest’24 EUROPE ,.-"*»._.__
LA

Vienna, Austria « #sf24eu

« Example: ShadowSocks (111_general_shadowsocks.pcapng)

(N [tcp.len >0 && tcp.stream != 3

No. ~ Time Source Source Port Protocol Destination

Length TCP Segment Len Info

15 2024-08-31 10:31.. 127.0.0.1 40164 TCP 127.0.0.1 704 636 40164 — 1234
24 2024-08-31 10:31.. 127.0.0.1 1234 TCP 127.0.0.1 1342 1274 1234 — 40164

32 2024-08-31 10:31.. 127.0.0.1 1234 TCP 127.0.0.1 5561 5493 1234 — 40164

37 2024-08-31 10:31.. 127.0.0.1 40164 TCP 127.0.0.1 182 114 40164 — 1234

44 2024-08-31 10:31.. 127.0.0.1 40164 TCP 127.0.0.1 129 40164 —~ 1234
45 2024-08-31 10:31.. 127.0.0.1 40164 TCcP 127.0.0.1 200 132 40164 —~ 1234
49 2024-08-31 10:31.. 127.0.0.1 1234 TCP 127.0.0.1 750 682 1234 —~ 40164

« Original flow bursts
(bytes): {517, 6599,
273, 648}

« ShadowSocks flow
bursts (bytes): {636,
6767, 375, 682}

EEE

Fingerprint before/after obfuscation

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

* Example: TLS over TLS (132_vmess-tcp-tls_curl.pcapng)

N tcp.len > 0 && tcp.stream in {0,1)
No. Time

Source Source Port Protocol Destination

Length

TCP Segment Len Info

29 2024-08-31 19:20:50,847484167 127.0.0.1 57874 TLSv1.3 127.0.0. 346 278 Client Hello
| 312024-08-31 19:20:50, 848915840 127.0.0.1 1234 TLSv1.3 127.0.0. 1188 1120 Server Hello,
| 34 2024-08-31 19:2 , 855146658 127.0.0.1 57874 TLSv1.3 7.0. 64 Change Ciphel

e.

36 2024-08-31 19 , 871953776 127.0.0.1 57874 TLSV1.3 .0 663 Application |
45 2024-08-31 19:20:50, 896375696 127.0.0.1 1234 TLSv1.3 .0 1208 Application |
| 46 2024-08-31 19:20:50,896417817 127.0.0.1 1234 TLSv1.3 127.0.0. 952 884 Application |
| 48 2024-08-31 19:20:50, 896465640 127.0.0.1 1234 TLSv1.3 127.0.0. 2138 2070 Application |
| 50 2024-08-31 19:20:50, 896496160 127.0.0.1 1234 TLSvi.3 127.0.0. 2138 2076 Application |
52 2024-08-31 19:20:50, 896539877 127.0.0.1 1234 TLSv1.3 .0.0. 518 Application |

61 2024-08-31 19:20:50, 900184401 127.0.0.1 57874 104 Application

68 2024-08-31
69 2024-08-31
73 2024-08-31

:50,900392807 127.0.0.1 57874
150,900440909 127.0.0.1 57874
150, 903315384 127.0.6.1 1234

154 Application
87 Application
672 Application

« Original flow bursts
(bytes) : {517,
6600, 273, 648}

« VMess flow bursts
(bytes): {663, 6750,
345, 672}

SharkFest’24 EUROPE
7=

I m p I e m e ntat i O n Vienna, Austria * #sf24eu

» We create some models with "standard" TLS flows (web/browser traffic)
as reference

 With real traffic, we evaluate the burst bytes/pkts distribution (in a sliding
window) through the initial portion of the flow: if it "looks like" the
distribution of "standard"/reference TLS traffic, then it is likely that we
found an obfuscated TLS handshake

* From a mathematical point of view, "looks like" means "the distance
between this specific distribution and the reference model is less than a
threshold"

» Threshold value is choose as tradeoff between TPR and FPR
« Example: 133_trojan-tcp-tls.pcapng (with extcap)
« Example: 134_vmess-websocket.pcapng (with extcap)
« Example: 135_shadowsocks-tcp.pcapng (with extcap)

SharkFest’24 EUROPE &
TLS: results arkFest’24 EUROPE 7%

Controlled traffic with only obfuscated |Matches/Total flows
TLS flows

303/426
1600/2176
1692/2366
2428/3638
971/1317

» TPR = ~70%(similar to paper results)

SharkFest’24 EUROPE # &§:
TLS: results arkFest’24 EUROPE 7%

Controlled traffic without Matches/Total flows |Real traffic from an ISP Matches/Total
obfuscated TLS flows flows

Firefox (random sites 3/4053 CP 318/544066
Chrome (random sites 4/6746 UDP 311/559791

Android (random apps, web, 0/3315 TCP (443 only) 559/3429006
games, calls
Edge (random sites 1/7372 UDP (no 53, 443, 2152, 4500 1739/298849
iPhone (random apps, web 0/3224 UDP(443 onl 1769/988079
Office span port (Win, Linux, 2/3968 STUN 0/106488

VM, Phones
IPv6 (no 53, 443 226/879107
RTP and DTLS 34/8452

* FPR (worst case) = ~0.7*10/-3

EzEmE
7 B8
=

TLS: results

* Is FPR ~1*10/-3 good enough?

 Usually, no, it isn't. Due to the huge volume of traffic passing through
a real network and the low base rate of obfuscated traffic in the wild,
this fingerprinting logic would likely label more legitimate connections
as proxied than actual proxied connections

« This fingerprint can be used anyway as a foundation upon which
build further application logic, for example moving from "obfuscated
flow" to "obfuscated server"

« active probing of suspected obfuscated servers

- statistical analysis of the overall traffic of suspected obfuscated
servers

« Example: 138_obfuscated_servers_analysis_1.pcapng (via extcap)
« Example: 139_obfuscated_servers_analysis_2.pcapng (via extcap)

EiEm
. B

SharkFest’24 EUROPE

Obfuscated TLS fingerprinting

« Limitations and future work:
« add support for session resumption/ORTT
« take a look at UDP/QUIC (MASQUE)
- track ECH/PQ development/deployment
¢ Chrome 131 (06/12) will move from Kyber to ML_KEM
 After one year, Cloudflare is re-enabling ECH
« what about no-web traffic (i.e. loT, VPN)?

« TLS stack on loT devices and VPN apps is usually not fully-featured
as in major browsers

« OpenVPN may use an obfuscated-like TLS handshake and most
VPN apps provided a configuration option to encapsulate OpenVPN
traffic on a TLS tunnel: this fingerprint might work with VPN also

EiEm
. B

https://security.googleblog.com/2024/09/a-new-path-for-kyber-on-web.html
https://community.cloudflare.com/t/early-hints-and-encrypted-client-hello-ech-are-currently-disabled-globally/567730
https://developers.cloudflare.com/ssl/edge-certificates/ech/

SharkFest’24 EUROPE # &

Fingerprinting of Fully Encrypted Protocols

* How the Great Firewall of China Detects and Blocks Fully
Encrypted Traffic, Mingshi Wu et al., USENIX Security 32, 2023

https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi

SharkFest’24 EUROPE

Fu I Iy Encrypted PrOtOCOIS Vienna, Austria « #sf24eu

* Fully Encrypted Protocols (FEPs): every byte in a connection
appears independently and uniformly random.

* TLS, HTTP, QUIC are NOT FEP
* Examples: ShadowSocks, OBFS, VMess

Vienna, Austria « #sf24eu

w
o
o
o
>
w
<
N
E

7]

[
L
X

[

5]
=
(7))

%)
()
-+ -
O ©
O O
@) = =
td Vu - —
o € o W
QT 99T
WS © =S
aL qvma
SF 950
- = t
» o nVu.muu,
@ X ol S
— > Q. —
o o o de
m — — - One
o Ow4 I = 2
P mSSn._alu.m
O S SIW o oY
O ® O = oA
LLI o o0 8O
L ° °

https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391

SharkFest’24 EUROPE _.-'%.._.
7 E

FEPS fingerprinting Vienna, Austria * #sf24eu

* Basic idea:
* most common protocols are not FEP

* measure the entropy/randomness of the flow: if it is "too much",
then itis likely a FEP

* The fingerprint is the flow entropy

* The concept seems simple enough: the hard part is how to measure
the entropy to avoid too many false positives

* Example: 140_shadowsocks.pcap (with extcap)

* Results: TPR = ~100% with ShadowSocks. What about false
positives?

SharkFest’24 EUROPE 7%

F E P S : reS u ItS Vienna, Austria * #sf24eu

Controlled traffic without Matches/Total flows |Real traffic from an ISP Matches/Total
FEPs flows

Firefox (random sites 0/4053 8926/544066
Chrome (random sites 0/6746 0/559791

Android (random apps, web, 12/3315 TCP (443 only) 0/3429006
games, calls
Edge (random sites 1/7372 UDP (no 53, 443, 2152, 4500 0/298849
iPhone (random apps, web 0/3224 UDP(443 onl 0/988079
Office span port (Win, Linux, 16/3968 STUN 0/106488
VM, Phones
IPv6 (no 53, 443 0/879107
RTP and DTLS 0/8452

* FPR (worst case) = ~1*107-3

SharkFest’24 EUROPE _.--‘%.._.
2,

Vienna, Austria * #sf24eu AN

Part V
Obfuscation pitfalls

SharkFest’24 EUROPE _.-'%.._.
7 E

Don't roll your own erypte obfuscation code

* Avoiding fingerprints and deploy a working obfuscation technique is
hard

* We have just seen a few examples where with some basic
statistic algorithms we can fingerprint/identify obfuscated flows

* There are good working programs/libraries that you should use if
you want to obfuscate some traffic: V2Ray, uTLS, Tor...

* Don't try to roll your own obfuscation code: you will do it wrong and
it will fail in a catastrophic/hilarious way!

EiEE
. B

SharkFest’24 EUROPE

Don't roll your own erypte obfuscation code

"[it] provides extended online freedom. It [...] get[s] past any VPN
blocks"

No. Time Source Protocol Destination Length SNI Info

1 2024-09-12 08:15:50, 741602224 10.57.153.127 TCP 152.47.116.178 74 45190 — 443 [SYN] Seq=0@ Win=65535 Len=0 MSS=14
| 2 2024-09-12 08:15:50,991578912 152.47.116.178 TCP 10.57.153.127 74 443 -~ 45190 [SYN, ACK] Seq—e Ack—i Win=43440 Le
| 3 2024-09-12 08:15:50,997737849 10.57.153.127 TCP 152.47.116.178 66 45190 — 443 [ACK] Seg=z -88064 Len=0 1
| 4 2024-09-12 08:15:50,998672017 10.57.153.127 TLSv1.3 152.47.116.178 345 _Cllent Hello (SNI
| 5 2024-09-12 08:15:51, 247878011 152.47.116.178 TCP 10.57.153.127 66 443 — 45190 [ACK]
\ 6 2024-09-12 08:15:51,256155184 152.47.116.178 TLSv1.3 10.57.153.127 1506 Server Hello, Change Cipher Spec, Application C
\

7 2024-09-12 08:15:51,256507582 152.47.116.178 TLSv1.3 10.57.153.127 780 Application Data, Application Data, Applicatior

- "Circumvent Censorship Feature: [...] protocol-level anti-censorship"

No. Time Source Protocol Destination Length Certificate Issuer Info

1 2024-07-23 14:30:32,772331274 172.30.84.193 TCP 17.5.27.63 74 42192 - 443 [SYN] Seq=@ Win=65535 Len=@ MSS=1:
2 2024-07-23 14:30:32,011061726 17.5.27. 172.30.84.193 Seq=0 Ack=1 Win=43440

\ 3 2024-07-23 14:30:32,997668634 172.30.84.193 TCP 17.5.27.63 66 42192 - 443 [ACK] Seq=1 Ack=1 Win=88064 Len=0

\ 4 2024-07-23 14:30:33,016839106 172.30.84.193 TLSv1.2 17.5.27.63 248 Client Hello

\ 5 2024-07-23 14:30:33,155514905 17.5.27.63 TCP 172.30.84.193 66 443 - 42192 [ACK] Seq=1 Ack=183 Win=43520 Len:

\ 6 2024-07-23 14:30:33,155535541 17.5.27.63 TLSvi.2 172.30.84.193 1102 —Server Hello, Certificate, Server Hello Done

\ 7 2024-07-23 14:30:33,204957625 172.30.84.193 TCP 17.5.27.63 66 42192 ~ 443 [ACK] Seq=183 Ack=1037 Win=90112 |

\ 8 2024-07-23 14:30:33,209874268 172.30.84.193 TLSv1.2 17.5.27.63 384 Client Key Exchange, Change Cipher Spec, Encry

\ 9 2024-07-23 14:30:33,348237532 17.5.27.63 TCP 172.30.84.193 66 443 - 42192 [ACK] Seq=1037 Ack=501 Win=43520 |

| 10 2024-07-23 14:30:33,348263461 17.5.27.63 TLSvi.2 172.30.84.193 308 New Session Ticket, Change Cipher Spec, Encry e

97

Don't roll your own erypte obfuscation code

"XXXis an
OpenVPN tunnel
masked to look like
HTTPS traffic. This
protocol is very
helpful on restrictive
networks"

"Don't stick out"
problem: if your
feature is visible at
the network level,
and you are the only
one using it, you can
trivially be detected

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

MNO. Time
1 2021-@8-03 17

source Protocol
02,081352767 172.36.81.193 TCP

Dostinaton Length
261.130.111.18 74

sorver info

172364

193 74

| A - : 18 66 11114 —~ 13
4 5 2024-G8-03 , 413538433 130.14_.43 1000 41414 - 443
t G 2024-68-03 ,4158038E2 .130.141.48 1090 41414 — 443 [
} [2024 €8 03 3, £1406U6% ©.141.48 1000 31314 . 443
t 3 2024-68-03 ,414222112 1 130.141.48 1090 41414 - 443
9 2024-GR-03 3, 414396164 130.141 .48 1090 41414 — 443
} 19 2024 @8 02 . 4169501723 41414 . 442 [ACK]
} 2021-68-03 416118818 1 11414 —~
[} 2024 -GR-03 16236460

» Frame 12: 109 byt=s on wire (872 bits), 109 b)tv‘s captured (672 bits) on interface eth0, ic O

» =tnernet 11, Src: 26:35:Th:ab:4a:ll (26:86:Tb:ab:34a:11), Ust: kdimaxlicchno_Zt:bb:cd [€8:be:ac:2r:bb:ico)
» Internet Protocol Version 4, Src: 172.30.84.193, Dst: 104.130 1£1.48

» 1 Src Port: 41414, Dst Port: 443, Seq: 7169, Ack: 1, Len: 43

45(1024), ¥6(102¢), #7(1024), #8(1024), #9(1024), #20(10924),

7211 bytes): #1171024), ¥12(42)]

v T15v1.2 Recard layer

Handshake Pratnenl: C€liert Hel’n

Content Type: llendsheke (22)

Version: ILS 1.0 (0xU3L1)

lenglh: 726R
~ llandshake Protocol: Client llello

Handshake 1ypc: Client kello (1)
7202

TLS 1.2 (Ex930%)
Random: £9db@cObEaacocanc43di5430E825569c5F87Cdda"c8182adfdd44513865822¢caa
Session ID Lergth: 32
Session TD: 1rhGf4Thfeda93C4ndrehf n975209dc e’ AS3nedl1 72°383d0RaaTdZaAfrAT7 2
Cipher Suites Length: 34
Cipher Suites (17 cuite

Compression Melhods Tengla: 1
» Compression Methods (1 Twetro..-
ExTensiors Lergth: [9ub
Ex_ensiovn: spplicallon_layer _proivcol regolialion (len=14)
Exzensior: ec_point_formats (l=n-2)
ExTonsiorn: session_tickct (Lon=U)
Exzension: status_rejuest (len=5)

zensiorn: supporzed_grouos

T c034bacdaBd4]

98

Sog=5121

ACL] Se

Don't roll your own erypte obfuscation code

* Adding some
unexpected or
carefully crafted data/
packets at the
beginning of the flow
might be a good idea

 Standard ports 443/53
are problematic:
unknown traffic on
443/53 might be more
suspicious than on
random ports

172.30.
172.30
172.30
5 1

172 el
172 9

3, 31503532
345057978
54‘0\30779

Len=4g
~n-43
~n-31
an 43

Lan-13

Lan-13

Len=43

172.:'9‘
3, 345914955 172,90
1. 345920671

346612070 Len=43
.;umswu Lon=42
~n-44

Hann
Hannshake RASNONSA, SR
Keepalive, raceivar GxEesS|
Trarsport Data,
Trwrspur L Dala.
Trevspur L Dala,

Bl
SRRIRFA 24
S81876153

2514
ECEO3EE10
062500700

Trarspol
Trevspur L Dala.
'r. erspur L Dala,

4, 3
44, 007033397
144, 006100055 172.30
44, 008530012 172.30. 0.
44, 008609320
3144, UDLYGHEED

Toeispur L Dala.
Trerspur L Dala,

pur L bata,
Dala,

Trarsport Data,
Transport Data,
Transport Data,
Tierspur . Dala,
Trerspur L Dala.
purl bata,
e Dk,
Iransport Data,
Transport Data,

17;‘,39:
172,30

Suarc
Cugre
Cumr d

.|4' 01;4"9‘94 19
1, 0|2319318
2]

Trersport Data. race:
02.221.172.193 18 Trersour L Dala. 1 eceive

424
‘.N 042520195
44. 042025609 172.30.04.

racsiver FeRAnNINY,
raceliver ExeasD3q
racu»sr 910‘350]1

rariver FRF2FEA

Transport Data, raceiver @xBE.

Transport Data, racelver-gx@aspid
Aver=6

SharkFest’24 EUROPE

Vienna, Austria « #sf24eu

ke Imt1abion, renper-HxdE2l =450
@XARTNIARY, receiver ROAFPEFASD
, fontzr J

counter-1, datalen-£@

TrarspnrT Data, racsiver FXxRATDIAA-
Trarsport Data, racsiver ExBEZFEA2C,
Data, raceiver-exeaspid

=Fr 18, datalaa £1
counter 11, datalsn 1388
ceuncer- 12, datalen-13 !JD

datalsn
datalen-1300
2

r-2e,

datalsn 189
datalen-€1
. datalsn=g

. dalal

SharkFest’24 EUROPE
7=

Avoiding fingerprint is hard

* In 10/2022 the bandwidth on a Snowflake bridge suddenly dropped:
*some™ Android devices were not able to connect to the bridge anymore

* Culprit: JA3C fingerprint!

* "Go cryptol/tls ciphersuite ordering does not directly have to do with
mobile versus desktop; it instead hinges on whether the platform has
hardware AES-GCM acceleration or not. Some mobile platforms do not
have such acceleration, while most desktop platforms do, which is why
the ciphersuite order and hence the TLS fingerprint tends to differ
across mobile and desktop". Details here

* Solution: use UTLS on Tor browser. It "provides ClientHello
fingerprinting resistance, low-level access to handshake, fake session
tickets ..."

* Bottom line: the fingerprint of your SW might depend on the HW!

EEE
00 B

https://github.com/net4people/bbs/issues/131#issuecomment-1280284051
https://github.com/refraction-networking/utls

Thank you !

bl > :
. - L
e m
Fad

i P oy
L 23 AT

https://www.ntop.org/ntopconf25/

El"”E__!
101 ig%ﬁ
=

https://www.ntop.org/ntopconf25/

