PF_RING & n2disk Since Last ntopConf

Alfredo Cardigliano cardigliano@ntop.org

June, 23-24 · Milan

Last time we met...

What's New In PF_RING

June, 23-24 · Milan

PF_RING

- Introduced in 2004 for improving the performance of network monitoring applications, by providing packet capture acceleration
- PF_RING offers on commodity hardware (a standard PC with commodity Network adapters) the ability to receive and transmit at high speed

PF_RING ZC

- Wire-rate packet capture up to 100 Gbit using kernel-bypass zero-copy drivers with commodity adapters (e.g. Intel)
- Support for many (almost all) specialized FPGA adapters on the market (Napatech, Silicom Fiberblaze, Accolade, etc.)

PF_RING Over XDP

- XDP (eXpress Data Path) is a new layer in the Linux kernel before the network stack
- Not kernel bypass: data-plane inside the kernel, programmable using eBPF programs
- AF_XDP is the socket used to deliver packets to userspace
- PF_RING 8 introduces an optimized support for zero-copy/batch capture using AF_XDP

Intel E810 "Columbiaville"

- New PF_RING ZC "ice" driver for the new family of Intel 100 Gbit Ethernet adapters (ice)
 - This replaces "fm10k" Intel 100 Gbit adapters
- Supported link speed: 10/25/50/100 Gbit
- Capture performance: 25 Mpps per queue/core

Mellanox Connect-X

- New PF_RING ZC driver for Mellanox (NVIDIA) Ethernet adapters (Connect-X 4/5/6)
- Supported link speed: 10/25/40/50/100/200 Gbit
- Support for many RSS queues (multithread applications)
- Flexible hardware filtering
- Hardware timestamping

Mellanox Performance

- Capture performance:
 - 32 Mpps on a single core (20 Gbps with worst-case 60-byte packets, 40 Gbps with an avg packet size of 128 bytes)
 - Full 100 Gbps using RSS
- Application performance (nProbe Cento):
 - 100 Gbps worst-case traffic (small packet size) using 16 cores
- Tested with Mellanox ConnectX-5 on Intel Xeon Gold 16-cores
 @ 2.2/3.5 GHz

Load-Balancing / Duplication

- As opposite to ZC drivers for Intel, access to the device is non exclusive on Mellanox, even in zerocopy kernel-bypass mode
- It is possible to capture traffic from multiple applications (traffic <u>duplication</u>)
- Different load-balancing (RSS) configuration for each application

Load-Balancing / Duplication

- Example
 - Full traffic to a single data stream for traffic recording (n2disk)
 - Load-balancing to N streams/cores for processing (nProbe Cento)

Hardware Filtering

- High number of hardware rules (64K on Mellanox ConnectX-5)
- Flexible rules: compose rules by specifying which packet headers (protocol, src/dst IP, src/dst port, etc) and masks, should be used to match the rule
- Drop or pass actions (with default accept or deny)
- Rules priority support, also across applications

n2disk: How To Build a 100 Gbit Network Recorder

June, 23-24 · Milan

Continuous Recording

- Going back in time and drilling down to the packet level could be crucial to find the exact network activity that caused an issue.
- In most cases it's not possible to predict when a network event occurs, we need to record traffic until the problem occurs.
- Large companies are often protected by firewalls and IDSs (Intrusion Detection Systems). Those security tools do not keep traffic history but just log security events.

n2disk

• 1/10/40/100 Gbit traffic recorder

- It relies on PF_RING for capturing and processing traffic with no packet loss up to 100 Gbps sustained
- It uses the industry standard PCAP file format to dump packets into files
- Hardware timestamps with nanosecond accuracy (with supported adapters)
- Full packets are stored and indexed to enable ondemand retrieval (BPF)

Technology

• Multithreaded packet processing architecture

Capture Performance - ASIC

•Commodity ASIC NICs (e.g. Intel) work perpacket (many transactions on the PCIe bus, single packets are moved off the adapter)

Capture Performance - FPGA

•FPGA NICs support block mode (less pressure on the PCIe bus, data blocks are moved off the adapter)

Scale Capture Performance

 RSS is usually used to load balance incoming traffic and spread it across multiple queues where cores operate in parallel

100 Gbps

RSS Drawbacks

• RSS shuffles ingress traffic, loosing the order of network packets on the wire, required to provide evidence of a Network issue

 However, hardware timestamps (when available) can be used to sort packets at extraction time ntopConf'22

Index Performance

• A single core can process/index 10-15 Gbps (4 cores can handle 50 Gbps)

nto

Dump Performance

• What about the storage?

Drives Performance

Drive Type	Random IOPS	Sustained Sequential I/O
SAS/SATA 7,200RPM	70 – 175	100 – 230 MB/s
SAS 10,000RPM	275 – 300	125 – 200 MB/s
SAS 15,000RPM	350 – 450	125 – 200 MB/s 1-2 Gbp
2.5" Solid State (SSD)	15,000 – 100,000	110 – 500 MB/s 1-4 Gbp
NVMe PCI-E Solid State (SSD)	70,000 – 625,000	1,100 – 3,200 MB/s 10-20 Gbp

RAID

- RAID is a good option for increasing disk bandwidth
- At least 8-10 HDD drives for 10 Gbit when using RAID 0, more drives are required with parity (e.g. RAID 5/50/6)

RAID Performance

- SATA/SAS 10k/15k RPM HDD drives are a good compromise in terms of price/number
- SSDs should be used when we need to read and write simultaneously to avoid seeking issues
- A RAID controller is usually able to handle ~40 Gbps of write throughput
- Scaling above 40 Gbps requires using multiple RAID controllers :-/

NVMe Disks

- NVMe drives are SSDs directly connected to the PCIe bus
- Pros
 - NVMe are lightfast (~20 Gbps per disk)
 - No need of a RAID controller (they are on the PCIe, a standard SATA/SAS controller cannot drive them)
- Cons
 - A bit expensive, especially those write-intensive
 - Limited number of slots available (usually 10)
- Mandatory at 100 Gbps (~8 drives are enough)

NVMe RAID Emulation

 Multithreaded parallel dump support in n2disk can write in parallel to multiple NVMe disks, emulating a RAID 0

100 Gbps Recording

- Load-balancing to 2 streams
- 2x n2disk instances, able to handle 50 Gbps each
- 8x total NVMe disks

The Recipe for 100 Gbps

- CPU: 16+ Cores 3+ Ghz
- RAM: 64+ GB (or enough to fill all memory channels supported by the CPU)
- Adapter: FPGA with support for segment mode and hardware timestamps (Napatech, Fiberblaze, ..)
- Storage: 8+ NVMe disks (storage size limited by the number of disks available on the box)

CPU Load at 100 Gbps

•CPU cores utilization capturing, indexing and dumping 100 Gbps worst-case traffic (64-byte packets) on a 24-cores system

Thank you

June, 23-24 · Milan