PF_RING & n2disk
Since Last ntopConf

Alfredo Cardigliano
cardigliano@ntop.org
Last time we met...

Future Activities

- Packet Capture (PF_RING)
 - XDP/AF_XDP support (work in progress)
 - New, programmable, packet capture path.
 - Under active development, all drivers will support it soon.
 - This can speed up capture with adapters not supported by ZC!
 - Native Mellanox support?
What's New In PF_RING
PF_RING

- Introduced in 2004 for improving the performance of network monitoring applications, by providing packet capture acceleration

- PF_RING offers on commodity hardware (a standard PC with commodity Network adapters) the ability to receive and transmit at high speed
PF_RING ZC

• Wire-rate packet capture up to 100 Gbit using kernel-bypass zero-copy drivers with commodity adapters (e.g. Intel)

• Support for many (almost all) specialized FPGA adapters on the market (Napatech, Silicom Fiberblaze, Accolade, etc.)
PF_RING Over XDP

- XDP (eXpress Data Path) is a new layer in the Linux kernel before the network stack
- Not kernel bypass: data-plane inside the kernel, programmable using eBPF programs
- AF_XDP is the socket used to deliver packets to userspace
- PF_RING 8 introduces an optimized support for zero-copy/batch capture using AF_XDP
Intel E810 "Columbiaville"

- New PF_RING ZC "ice" driver for the new family of Intel 100 Gbit Ethernet adapters (ice)
 - This replaces "fm10k" Intel 100 Gbit adapters
 - Supported link speed: 10/25/50/100 Gbit
 - Capture performance: 25 Mpps per queue/core
Mellanox Connect-X

- New PF_RING ZC driver for Mellanox (NVIDIA) Ethernet adapters (Connect-X 4/5/6)
- Supported link speed: 10/25/40/50/100/200 Gbit
- Support for many RSS queues (multithread applications)
- Flexible hardware filtering
- Hardware timestamping
Mellanox Performance

• Capture performance:
 • 32 Mpps on a single core (20 Gbps with worst-case 60-byte packets, 40 Gbps with an avg packet size of 128 bytes)
 • Full 100 Gbps using RSS

• Application performance (nProbe Cento):
 • 100 Gbps worst-case traffic (small packet size) using 16 cores
 • Tested with Mellanox ConnectX-5 on Intel Xeon Gold 16-cores @ 2.2/3.5 GHz
Load-Balancing / Duplication

• As opposite to ZC drivers for Intel, access to the device is non exclusive on Mellanox, even in zero-copy kernel-bypass mode

• It is possible to capture traffic from multiple applications (traffic duplication)

• Different load-balancing (RSS) configuration for each application
Load-Balancing / Duplication

• Example

• Full traffic to a single data stream for traffic recording (n2disk)

• Load-balancing to N streams/cores for processing (nProbe Cento)
Hardware Filtering

• High number of hardware rules (64K on Mellanox ConnectX-5)

• Flexible rules: compose rules by specifying which packet headers (protocol, src/dst IP, src/dst port, etc) and masks, should be used to match the rule

• Drop or pass actions (with default accept or deny)

• Rules priority support, also across applications
n2disk: How To Build a 100 Gbit Network Recorder
Continuous Recording

• Going back in time and drilling down to the packet level could be crucial to find the exact network activity that caused an issue.

• In most cases it’s not possible to predict when a network event occurs, we need to record traffic until the problem occurs.

• Large companies are often protected by firewalls and IDSs (Intrusion Detection Systems). Those security tools do not keep traffic history but just log security events.
n2disk

- 1/10/40/100 Gbit traffic recorder
- It relies on PF_RING for capturing and processing traffic with no packet loss up to 100 Gbps sustained
- It uses the industry standard PCAP file format to dump packets into files
- Hardware timestamps with nanosecond accuracy (with supported adapters)
- Full packets are stored and indexed to enable on-demand retrieval (BPF)
Technology

• Multithreaded packet processing architecture
Capture Performance - ASIC

- Commodity ASIC NICs (e.g. Intel) work per-packet (many transactions on the PCIe bus, single packets are moved off the adapter)
Capture Performance - FPGA

• FPGA NICs support block mode (less pressure on the PCIe bus, data blocks are moved off the adapter)

~50 Gbps

Packet Capture

Indexing Thread

Indexing Thread

Indexing Thread

PCAP Dumper

pcap
01010101010101
00010101010110
01010101010110
01010101010101
00010101010101
00010101010101
00010101010101
00010101010101
00010101010101
00010101010101
00010101010101
00010101010101

Port 80

ntopConf '22

June, 23-24 · Milan
Scale Capture Performance

- RSS is usually used to load balance incoming traffic and spread it across multiple queues where cores operate in parallel.

50 Gbps → Packet Capture

50 Gbps → Packet Capture

100 Gbps
RSS Drawbacks

- RSS shuffles ingress traffic, loosing the order of network packets on the wire, required to provide evidence of a Network issue.

- However, hardware timestamps (when available) can be used to sort packets at extraction time.
Index Performance

- A single core can process/index 10-15 Gbps (4 cores can handle 50 Gbps)
Dump Performance

- What about the storage?
Drives Performance

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Random IOPS</th>
<th>Sustained Sequential I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS/SATA 7,200RPM</td>
<td>70 – 175</td>
<td>100 – 230 MB/s</td>
</tr>
<tr>
<td>SAS 10,000RPM</td>
<td>275 – 300</td>
<td>125 – 200 MB/s</td>
</tr>
<tr>
<td>SAS 15,000RPM</td>
<td>350 – 450</td>
<td>125 – 200 MB/s</td>
</tr>
<tr>
<td>2.5" Solid State (SSD)</td>
<td>15,000 – 100,000</td>
<td>110 – 500 MB/s</td>
</tr>
<tr>
<td>NVMe PCI-E Solid State (SSD)</td>
<td>70,000 – 625,000</td>
<td>1,100 – 3,200 MB/s</td>
</tr>
</tbody>
</table>

- 1-2 Gbps
- 1-4 Gbps
- 10-20 Gbps
RAID

- RAID is a good option for increasing disk bandwidth

- At least 8-10 HDD drives for 10 Gbit when using RAID 0, more drives are required with parity (e.g. RAID 5/50/6)
RAID Performance

• SATA/SAS 10k/15k RPM HDD drives are a good compromise in terms of price/number

• SSDs should be used when we need to read and write simultaneously to avoid seeking issues

• A RAID controller is usually able to handle ~40 Gbps of write throughput

• Scaling above 40 Gbps requires using multiple RAID controllers :-/
NVMe Disks

• NVMe drives are SSDs directly connected to the PCIe bus

• Pros

 • NVMe are lightfast (~20 Gbps per disk)

 • No need of a RAID controller (they are on the PCIe, a standard SATA/SAS controller cannot drive them)

• Cons

 • A bit expensive, especially those write-intensive

 • Limited number of slots available (usually 10)

 • Mandatory at 100 Gbps (~8 drives are enough)
NVMe RAID Emulation

- Multithreaded parallel dump support in n2disk can write in parallel to multiple NVMe disks, emulating a RAID 0
100 Gbps Recording

- Load-balancing to 2 streams
- 2x n2disk instances, able to handle 50 Gbps each
- 8x total NVMe disks
The Recipe for 100 Gbps

• CPU: 16+ Cores 3+ Ghz

• RAM: 64+ GB (or enough to fill all memory channels supported by the CPU)

• Adapter: FPGA with support for segment mode and hardware timestamps (Napatech, Fiberblaze, ..)

• Storage: 8+ NVMe disks (storage size limited by the number of disks available on the box)
CPU Load at 100 Gbps

- CPU cores utilization capturing, indexing and dumping 100 Gbps worst-case traffic (64-byte packets) on a 24-cores system
Thank you