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More network visibility!
What does it take?
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More network visibility!
What does it take?

Supporting plethora of protocols

Data plane: IPFIX, sFLow, ..

Control plane: BMP, BGP, IS-IS,.. 

Management: YANG-Push, NETCONF,..
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More network visibility!
What does it take?

Scaling to thousands of devices

Efficient resource handling

High concurrency

Resiliency

Fault tolerance
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More network visibility!
What does it take?

Advanced features

Flexible aggregation

Correlating different data streams

Enrichment with dynamic sources
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NetGauze architecture principles
Our secrete sauce

7



NetGauze architecture principles
Our secrete sauce

Construct reusable modules

Small modules with clear interfaces

Test, test, and then test again!

Fuzz testing for core modules
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NetGauze architecture principles
Our secrete sauce

Scale to the moon

Use actor programming model

Synchronize via message; no locks

Use async I/O
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NetGauze fast packet parsers
Speed, resiliency and standard conformance
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NetGauze fast packet parsers
Speed, resiliency and standard conformance

Rich type system

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[cfg_attr(feature = "fuzz", derive(arbitrary::Arbitrary))]
pub enum BgpMessage {

Open(BgpOpenMessage),
Update(BgpUpdateMessage),
Notification(BgpNotificationMessage),
KeepAlive,
RouteRefresh(BgpRouteRefreshMessage),

}
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NetGauze fast packet parsers
Speed, resiliency and standard conformance

Supports multiple 

serialization formats

let msg = BgpMessage::KeepAlive;

let json_str = serde_json::to_string_pretty(&msg)
    .expect("Failed to serialize to JSON");
println!("JSON representation of BGP packet:\n{json_str}");

let yaml_str = serde_yaml::to_string(&msg).expect("Failed 
to serialize to YAML");
println!("YAML representation of BGP packet:\n{yaml_str}");
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NetGauze fast packet parsers
Speed, resiliency and standard conformance

Verbose errors

LocatedBgpMessageParsingError {

  span: BinarySpan {

         offset: 21,

   fragment: [255, 1]},

  error: BgpRouteRefreshMessageParsingError(

     UndefinedOperation(

  UndefinedRouteRefreshSubcode(255)

     ))

}
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NetGauze fast packet parsers
Speed, resiliency and standard conformance

Fuzz testing

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[cfg_attr(feature = "fuzz", derive(arbitrary::Arbitrary))]
pub enum BgpMessage {
    Open(BgpOpenMessage),
    Update(BgpUpdateMessage),
    Notification(BgpNotificationMessage),
    KeepAlive,
    RouteRefresh(BgpRouteRefreshMessage),
}

14



NetGauze roadmap
Develop, test, deploy, repeat!
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NetGauze roadmap
Develop, test, deploy, repeat!

Open-source from 

day 1
Ahmed Elhassany

Swisscom

Leonardo Rodoni

Swisscom

Uwe Storbeck

Swisscom

Maxence Younsi

INSA Lyon
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NetGauze roadmap
Develop, test, deploy, repeat!

Protocol support

BGP

BGP Monitoring Protocol (BMPv3)

BGP Monitoring Protocol (BMPv4, under review)

NetFlow v9

IPFIX: supporting all IANA code points.

UDP-Notif 

YANG-Push (pull request soon)

NETCONF late 2025

sFlow 2026?
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NetGauze roadmap
Develop, test, deploy, repeat!

Listener libraries

BGP

BMP

Flow: NetFlow v9 and IPFIX

UDP-Notif: Supporting YANG-Push

NETCONF late 2025

sFlow 2026?
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NetGauze roadmap
Develop, test, deploy, repeat!

Advanced analytics

Flow Aggregations

Flow enrichment

YANG-Push enrichment 2025

BGP->Flow correlations 2025

YANG->BGP->Flow correlations 2026

sFlow 2026?
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NetGauze roadmap
Develop, test, deploy, repeat!

Output formats

Apache Kafka JSON

Apache Kafka AVRO

Apache Kafka YANG 2025/2026
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NetGauze roadmap
Develop, test, deploy, repeat!

Initial deployment

IPFIX collection for ~400 nodes

Receive ~11 thousands messages per second

Kafka AVRO output (after flattening and aggregations) 

32 thousands messages per second.
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NetGauze
So what’s it about?

Collections of Rust networking libraries

A data collection of network telemetry

An analytics and aggregation engine for network telemetry

And more!
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