
NetGauze
The building blocks for building
resilient and scalable network
telemetry platforms

Ahmed Elhassany

ahmed.elhassany@swisscom.com

https://github.com/NetGauze/NetGauze

PacketFest 08.05.2025

mailto:ahmed.elhassany@swisscom.com
https://github.com/NetGauze/NetGauze

More network visibility!
What does it take?

2

More network visibility!
What does it take?

Supporting plethora of protocols

Data plane: IPFIX, sFLow, ..

Control plane: BMP, BGP, IS-IS,..

Management: YANG-Push, NETCONF,..

3

More network visibility!
What does it take?

Scaling to thousands of devices

Efficient resource handling

High concurrency

Resiliency

Fault tolerance

4

More network visibility!
What does it take?

Advanced features

Flexible aggregation

Correlating different data streams

Enrichment with dynamic sources

5

More network visibility!
What does it take?

Advanced features

Flexible aggregation

Correlating different data streams

Enrichment with dynamic sources

6

NetGauze architecture principles
Our secrete sauce

7

NetGauze architecture principles
Our secrete sauce

Construct reusable modules

Small modules with clear interfaces

Test, test, and then test again!

Fuzz testing for core modules

8

NetGauze architecture principles
Our secrete sauce

Scale to the moon

Use actor programming model

Synchronize via message; no locks

Use async I/O

9

NetGauze fast packet parsers
Speed, resiliency and standard conformance

10

NetGauze fast packet parsers
Speed, resiliency and standard conformance

Rich type system

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[cfg_attr(feature = "fuzz", derive(arbitrary::Arbitrary))]
pub enum BgpMessage {

Open(BgpOpenMessage),
Update(BgpUpdateMessage),
Notification(BgpNotificationMessage),
KeepAlive,
RouteRefresh(BgpRouteRefreshMessage),

}

11

NetGauze fast packet parsers
Speed, resiliency and standard conformance

Supports multiple

serialization formats

let msg = BgpMessage::KeepAlive;

let json_str = serde_json::to_string_pretty(&msg)
 .expect("Failed to serialize to JSON");
println!("JSON representation of BGP packet:\n{json_str}");

let yaml_str = serde_yaml::to_string(&msg).expect("Failed
to serialize to YAML");
println!("YAML representation of BGP packet:\n{yaml_str}");

12

NetGauze fast packet parsers
Speed, resiliency and standard conformance

Verbose errors

LocatedBgpMessageParsingError {

 span: BinarySpan {

 offset: 21,

 fragment: [255, 1]},

 error: BgpRouteRefreshMessageParsingError(

 UndefinedOperation(

 UndefinedRouteRefreshSubcode(255)

))

}

13

NetGauze fast packet parsers
Speed, resiliency and standard conformance

Fuzz testing

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[cfg_attr(feature = "fuzz", derive(arbitrary::Arbitrary))]
pub enum BgpMessage {
 Open(BgpOpenMessage),
 Update(BgpUpdateMessage),
 Notification(BgpNotificationMessage),
 KeepAlive,
 RouteRefresh(BgpRouteRefreshMessage),
}

14

NetGauze roadmap
Develop, test, deploy, repeat!

15

NetGauze roadmap
Develop, test, deploy, repeat!

Open-source from

day 1
Ahmed Elhassany

Swisscom

Leonardo Rodoni

Swisscom

Uwe Storbeck

Swisscom

Maxence Younsi

INSA Lyon

16

NetGauze roadmap
Develop, test, deploy, repeat!

Protocol support

BGP

BGP Monitoring Protocol (BMPv3)

BGP Monitoring Protocol (BMPv4, under review)

NetFlow v9

IPFIX: supporting all IANA code points.

UDP-Notif

YANG-Push (pull request soon)

NETCONF late 2025

sFlow 2026?

17

NetGauze roadmap
Develop, test, deploy, repeat!

Listener libraries

BGP

BMP

Flow: NetFlow v9 and IPFIX

UDP-Notif: Supporting YANG-Push

NETCONF late 2025

sFlow 2026?

18

NetGauze roadmap
Develop, test, deploy, repeat!

Advanced analytics

Flow Aggregations

Flow enrichment

YANG-Push enrichment 2025

BGP->Flow correlations 2025

YANG->BGP->Flow correlations 2026

sFlow 2026?

19

NetGauze roadmap
Develop, test, deploy, repeat!

Output formats

Apache Kafka JSON

Apache Kafka AVRO

Apache Kafka YANG 2025/2026

20

NetGauze roadmap
Develop, test, deploy, repeat!

Initial deployment

IPFIX collection for ~400 nodes

Receive ~11 thousands messages per second

Kafka AVRO output (after flattening and aggregations)

32 thousands messages per second.

21

NetGauze
So what’s it about?

Collections of Rust networking libraries

A data collection of network telemetry

An analytics and aggregation engine for network telemetry

And more!

22

	Default Section
	Slide 1: NetGauze The building blocks for building resilient and scalable network telemetry platforms
	Slide 2: More network visibility! What does it take?
	Slide 3: More network visibility! What does it take?
	Slide 4: More network visibility! What does it take?
	Slide 5: More network visibility! What does it take?
	Slide 6: More network visibility! What does it take?

	Arch priniciples
	Slide 7: NetGauze architecture principles
	Slide 8: NetGauze architecture principles Our secrete sauce
	Slide 9: NetGauze architecture principles Our secrete sauce

	Packet Rep
	Slide 10: NetGauze fast packet parsers
	Slide 11: NetGauze fast packet parsers Speed, resiliency and standard conformance
	Slide 12: NetGauze fast packet parsers Speed, resiliency and standard conformance
	Slide 13: NetGauze fast packet parsers Speed, resiliency and standard conformance
	Slide 14: NetGauze fast packet parsers Speed, resiliency and standard conformance

	Roadmap
	Slide 15: NetGauze roadmap
	Slide 16: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 17: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 18: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 19: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 20: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 21: NetGauze roadmap Develop, test, deploy, repeat!
	Slide 22: NetGauze So what’s it about?

