

PacketFest '25

Where ntop and Wireshark Communities Meet 8 - 9 May, Zürich

The Open Source Packet Analyzer

The 7 Senses Packet Detective

presented by Rolf Leutert

Rolf Leutert, Ing. HTL Network Protocol Expert Leutert NetServices Zürich-Airport, Switzerland

- Network Analysis & Troubleshooting
- Trainings TCP/IP, QUIC, WLAN, VoIP, IPv6
- Wireshark[®] Certified Network Analyst 2010
- Wireshark[®] Instructor since 2006
- Sniffer[®] certified Instructor since 1990

leutert@netsniffing.ch / www.netsniffing.ch

PacketFest '25

Technology: 40 years ago

DEPARTURES TERMINAL B											
FLIGHT	DESTINATION	GATE	TIME	STATUS							
498	NEWYORK	A 0 2	07:15	ON TIME							
536		A 1 0	0 8 : 0 0	BOARDING							
8 4 9	SINGAPORE	C 0 3	08:35	DELAYED							
1 5 0	PRAGUE	F 1 1	09:10	CANCELED							
633	TOKYO	A 0 8	10:45	ONTIME							
345	MILLAN	B 0 7	10:50	DELAYED							
789	HONGKONG	B 1 2	11:20	ON TIME							

Split Flap Display Board Zurich Airport 1984

IBM PS/2 & Token-Ring for Check-In & Boarding Gates

BreezeNet, first commercial 802.11 WLAN card LEUTER rvices Νρ

- 1984 Head of the new LAN group at Swissair
- 1984 Testing Coax-based Broadband LAN technology
- 1985 Roll-out Broadband LAN for Passenger & Staff Information
- > 80 Split Flap Displays, > 150 Public TVs, > 700 Staff devices
- 1986 Start testing Token Ring and Ethernet components
- 1986 Yellow Coaxial-Cable Ethernet for Flight Simulator Area
- 1989/90 Roll-out Airport Zürich: >100 Token Rings, >4000 PCs
- Largest Rings > 7 km at Boarding Gates
- 1999 First outdoor WLAN 802.11: > 60 Outdoor Access Points
- Airplane Handling: Maintenance, Cleaning, Catering etc.
- 2001 Swissair Grounding, Airport Authority takes over ICT.

Network Management: 40 years ago

Device Management Systems

- → All proprietary management systems!
 → No SNMP (1988), no NetFlow (1996)
- **IBM** SNA Network & Controllers
- **PROTEON** Token Ring MAUs
- ANDREW Token Ring Bridges
- CABLETRON Ethernet Hubs
- **DEC** Ethernet Bridges
- SynOptics Ethernet Hubs & Bridges
- Wellfleet Ethernet Routers
- **3COM** Ethernet Hubs & Bridges
- Bay Networks Ethernet Hubs & Bridges
- **Cisco** Token Ring & Ethernet Routers
- BreezeCOM WLAN Access Points

Network Protocols

Using Multiprotocol Routers, Bridges, WAN Gateways

- IBM SNA (not routable)
- IBM NetBeui (not routable)
- DecNet
- Novell IPX
- AppleTalk
- TCP/UDP/IP
- Token-Ring, Ethernet
- Frame Relay
- FDDI
- ATM
- WAN Protocols like ISDN

╋

LEUTER

Ne

rvices

Network Analysis: 40 years ago

1987 Swissair purchased the first Token Ring / Ethernet Sniffer® in Europe

- Compaq Portable (12 kg)
- Intel 8088, 4.7 MHz, 128 KB RAM
- Price (with 5 protocol suites)
 50'000 US\$ (todays equivalent)

Sniffer® from Network General

Ethereal ®

Gerald Combs (left) and Rolf Leutert, July 2006 in Kansas City / USA

5

÷

Network Management: Today and tomorrow

What has changed since then?

Network Management Systems

- **SNMP** & **NetFlow** became standards
- No proprietary management systems
- Lots of **Open-Source tools** available

Network Protocols

- Token Ring and other disappeared
- Most vendor protocol disappeared
- Ethernet became standard
- Ethernet replaces most WAN protocols
- POE Power over Ethernet
- WLAN widely implemented
- VoIP widely implemented
- New IPv6 protocol

What are the new challenges?

- Cyber Threats became a big issue
- Short product Live Cycles
 and costs
- Increasing **amount** of data
- Complexity of Network
 Virtualisation (SDN)
- New **QUIC** protocol, fully encrypted
- New Al technology, curse or blessing?

+

What has survived 40 years and is still often used?

- Hardware? No
- Operating systems? No
- Programming Languages: Some
- Proprietary management systems? No
- Ethernet? Yes

rvices

- Still uses the same original frame format
- Scales from 10Mbps to 1.6 Tbps and more
- Tagging options added (VLAN, MPLS etc.)

- IPv4? Yes
- Still uses the same header format (\geq 20 Bytes)

• UDP? Yes

- Still uses the same header format (8 Bytes)
- TCP? Yes
- Still uses the same header format (\geq 20 Bytes)
- Some new options (SACK, Window Scaling etc.)

Troubleshooting using IP and TCP fields

The **UDP** header does not contain many useful fields for network troubleshooting. However, the **IP and TCP fields** are still the basis for narrowing down network problems

A closer look at the IP header:

- In addition to the well-known IP addresses and TTL fields, there is another helpful field:
- One of the most overlooked field is the IP Identification field (IP ID, 2 Bytes)
- Originally defined for re-assembling fragmented frames, it can help you in other situations
- The IP Identification field is incremented by "1" by the sender in each packet sent to any destination

→ Use case 1: Large gaps in the IP ID sequence means the sender is busy serving also other destinations

	Net or appl delay	y01.pcapng												
D	<u>D</u> atei <u>B</u> earbeiten <u>A</u> nsicht <u>N</u> avigation <u>A</u> ufzeichnen Analyse <u>S</u> tatistiken Telephonie <u>W</u> ireless <u>T</u> ools <u>H</u> ilfe													
	■ ip.src==130.177.80.201 && ip.dst==195.160.66.21													
Ν	No. Time Delta Time		Source	Destination	TTL	Protocol	IP ID	Length	Info					
	- 1	0.000000	0.00000	130.177.80.201	195.160.66.21	128	TCP	0xbeae (48814)) 62	4619 → 8080 [SYN] S				
	3	0.000970	0.000970	130.177.80.201	195.160.66.21	128	ТСР	0xbeb5 (48821)) 54	4619 → 8080 [ACK] S				
	4	0.001071	0.000101	130.177.80.201	195.160.66.21	128	HTTP	0xbeb6 (48822)) 1117	GET http://www.ciso				
	7	0.519281	0.518210	130.177.80.201	195.160.66.21	128	ТСР	0xbec9 (48841)) 54	4619 → 8080 [ACK] S				
	10	0.569529	0.050248	130.177.80.201	195.160.66.21	128	ТСР	0xbecf (48847)) 54	4619 → 8080 [ACK] S				
	13	0.670306	0.100777	130.177.80.201	195.160.66.21	128	ТСР	0xbed1 (48849)) 54	4619 → 8080 [ACK] S				
	16	0.751334	0.081028	130.177.80.201	195.160.66.21	128	ТСР	0xbed4 (48852)) 54	4619 → 8080 [ACK] S				
	19	0.852190	0.100856	130.177.80.201	195.160.66.21	128	ТСР	0xbed7 (48855) 54	4619 → 8080 [ACK] S				
	22	0.852454	0.000264	130.177.80.201	195.160.66.21	128	ТСР	0xbed9 (48857)) 54	4619 → 8080 [ACK] S				
		0 922091	a 020510	130 177.80 201	195,160 66 21	1.78	TCP.	Avbade (18860	51	1619 -> 2020 [ACK]				

rvices

Troubleshooting using IP and TCP fields

A closer look at the IP header (cont):

- With TCP sessions, lost packet will be detected by TCP retransmissions
- But with UDP-based transmissions (e.g. VoIP) there are no retransmissions
- Some UDP-based application protocols (e.g. RTP, SIP) have a packet number in the header
- But in some application protocols (e.g. Skype for Business (SfB), Teams) the UDP payload is encrypted

→ Use case 2: A router is dropping SfP-VoIP packets, which is visible only by following the IP ID sequence number

Datei Bearheiten Ancicht Navigation Aufzeichnen Analyse Statistiken Telenhonie Wireless Tools Hilfe									D	atei Rearb	eiten Ansicht Na	vigation Aut	fzeichnen An:	alvee St	atistiken	Telenhonie Wir	eless Tools	Hilfe	
Darei Dearbeiten Ansicht Mavigation Aufzeichnen Analyse Statistiken leiebuonie Miteless Tools Fille									<u></u>		enen Ansiene <u>n</u> u	Ngation Au	And And	nyse <u>s</u> e	austiken		cicas <u>1</u> 00is	/	
🛋 🔳 4	🧾 🛞 🚞 🔚 🔀 🗋	९ ⇔ ⇒ ≦	2 T 🕹 📃	€	Q Q 🎹				1	📶 🔳 🖉 🕲 📁 🛅 🗙 🖆 । ९. ⇔ 🕾 🖗 🧕 📃 📃 ९. ९. ९. 표 🗄									
(udp.s	tream == 0) && (ip.src ==	= 10.3.)									(udp.strean	n == 1) && (ip.src ==	10.3.)						
No.	Delta Time	Source	Destinat	TTL	DSCP	Protocol	IP ID		Ţ.,	Ν	lo.	Delta Time	Source	Destina	TTL	DSCP	Protocol	IP ID	
25	0.019555	10.3	10.3	128	46	UDP	0xd892	(55442)	1		419	0.019243	10.3	10.3	127	46	UDP	0xd892	(55442)
27	0.019998	10.3	10.3	128	46	UDP	0xd893	(55443)	1		477	0.019549	10.3	10.3	127	46	UDP	0xd893	(55443)
29	0.021306	10.3	10.3	128	46	UDP	0xd894	(55444)	•+		548	0.021994	10.3	10.3	127	46	UDP	0xd894	(55444)
31	0.022887	10.3	10.3	128	46	UDP	0xd895	(55445)			3020	1.279556	10.3	10.3	127	46	UDP	0xd8d9	(55513)
33	0.019750	10.3	10.3	128	46	UDP	0xd896	(55446)	<		3076	0.018363	10.3	10.3	127	46	STUN	0xd8da	(55514)
35	0.018937	10.3	10.3	128	46	UDP	0xd897	(55447)	3		3078	0.001409	10.3	10.3	127	46	UDP	0xd8db	(55515)
36	0.019236	10.3	10.3	128	46	UDP	0xd898	(55448)	Ř.		3095	0.023357	10.3	10.3	127	46	UDP	0xd8dc	(55516)
.30	0.018808	10.3	10.3	128	46	UDP	9xd899	(55449)	5		- 2118	P 010550	.10_7	19.3.	1.17	AG_	- UDP-	0xd8dd	(55517)

Captured in front of the router (all packets visible) Captured after the router (167 packet dropped)

Troubleshooting using IP and TCP fields

A closer look at the **IP header** (cont):

- It may happen that you see all the **packets twice** in your trace file.
- The Wireshark Expert marks these duplicates as TCP Retransmissions or Duplicate Acks. Is this correct?
- Not always! In this case: False positive messages! The Wireshark looks for repeating TCP Sequence Numbers

-> Use case 3: Packets are duplicated by a network component. Visible by analyzing the IP Identification field

💋 Duplica	🧖 Duplicate Frames.pcap											
Datei B	Datei Bearbeiten Ansicht Navigation Aufzeichnen Analyse Statistiken Telephonie Wireless Tools Hilfe											
🥖 🔳 🖉												
Anzeig	efilter anwenden <c< td=""><td>trl-/></td><td></td><td></td><td></td><td></td><td>4</td></c<>	trl-/>					4					
No.	Delta Time	Source	Destina	TTL	Protocol	IP ID	Length Info					
6	0.000000	82.15	194.1	128	TCP	0xc70e (50958)	1438 2662 → 15022 [ACK] Seq=2757 Ack=1 Win=16096 Len=1380					
7	0.00000	82.15	194.1	128	тср	0xc70e (50958)	1438 [TCP Retransmission] 2662 → 15022 [ACK] Seq=2757 Ack=1 Win=16096 Len					
8	0.000000	82.15	194.1	128	TCP	0xc70f (50959)	1434 2662 → 15022 [PSH, ACK] Seq=4137 Ack=1 Win=16096 Len=1376					
9	0.00000	82.15	194.1	128	тср	0xc70f (50959)	1434 [TCP Retransmission] 2662 \rightarrow 15022 [PSH, ACK] Seq=4137 Ack=1 Win=1609					
10	0.000000	194.1	82.15	59	TCP	0x90a1 (37025)	64 15022 → 2662 [ACK] Seq=1 Ack=4294965917 Win=33120 Len=0					
11	0.00000	194.1	82.15	59	тср	0x90a1 (37025)	64 [TCP Dup ACK 10#1] 15022 → 2662 [ACK] Seq=1 Ack=4294965917 Win=33120					
12	0.000000	194.1	82.15	59	TCP	0x90a2 (37026)	64 15022 → 2662 [ACK] Seq=1 Ack=1377 Win=33120 Len=0					
13	0.00000	194.1	82.15	<u>59</u>	TCP	0x90a2 (37026)	64 [TCP Dup ACK 12#1] 15022 → 2662 [ACK] Sea=1 Ack=1377 Win=33120 Len=0					

Currently, the Wireshark Expert does not make a relationship between the TCP and IP headers
 To remove duplicate frames use: editcap -d duplicate_frames.pcapng no_duplicate_frames.pcapng

Troubleshooting using IP and TCP fields

A closer look at the TCP header:

- TCP is still the most valuable protocol for network troubleshooting
- Packet loss or any other irregularities are detected by TCP
- In addition, the Wireshark Expert is highly advanced and a valuable assistant in narrowing down problems
- There are just four basic parameters that determine the flow of a TCP session (also called Stream):
- Sequence Number:

 Each frame contains a unique 4-byte number, starting with a random value, generated by the sender
 This number is increased by number of transmitted payload bytes (counting transmitted bytes, not packets)

 Acknowledge Number:

 This ACK 4-byte number from the receiver, points to the next expected byte (not the last byte received)
 With one ACK, multiple received packet can be acknowledged (ACK = 5000 -> received all bytes up to 4999)

 Window

 Is the size of the receive buffer. TCP has sophisticated Flow Control; flooding of the receiver never occurs!
- Size:
 In each packet, the receiver regularly informs the sender of the size of the remaining input buffer (in bytes)
- > Timing:
- For an efficient data flow, propagation delay is a critical value, TCP can handle a wide range of delays
- The round-trip time (RTT) depends on the physical distance and devices between transmitter and receiver
- With a large window size, long RTTs can be compensated so that TCP can transmit continuously

-> Wireshark displays all four parameters and their relationships in the TCP Stream Graph (my favorite feature)

rvices

Troubleshooting using IP and TCP fields

A closer look at the **TCP header** (cont):

To create the graph, open a TCP trace file. Go to → Statistics → TCP Stream Graphs → Time Sequence (tcptrace)

- A TCP stream is a **full-duplex communication**
- It consists of **two** independent **Half Sessions**
- One in each communication direction
- The graph is showing **one Half Session** at a time
- Use Switch Direction to change the direction
- Use **Stream** button to show next TCP stream
- Mouse Wheel to zoom in & out
- Right mouse to show navigation details
- Space Bar to show crosshair pointer
- \rightarrow Live demonstration: HTTP Speedtest.pcap

rvices

Troubleshooting using IP and TCP fields

A closer look at the **TCP header** (cont):

→ Use case 1: Understanding the diagram will help you identify most of the critical TCP situations

- Lost Frames
- Duplicate Frames
- Out of order Frames
- TCP Sequence number and Segment Sizes
- Acknowledges, Delayed Acknowledges
- Duplicate and Selective Acknowledges
- Retransmissions and Fast Retransmissions
- Windows Sizes, sliding Window
- Frozen Windows Size
- Zero Window and Window Full Situation
- Window Scaling,
- Slow Start, full Flow rate and Flow throttling
- \rightarrow Live demonstration: TCP Errors 01.pcap
- → Conclusion: The network drops packets, but without any significant impact on throughput

ervices

Troubleshooting using IP and TCP fields

A closer look at the TCP header (cont):

→ Use case 2: Transmission blocked by the receiver. Wireshark messages TCP Windows Full and TCP Zero Window

rvices

Troubleshooting using IP and TCP fields

A closer look at the TCP header (cont):

A printer has been installed in a remote warehouse for printing delivery notes, sent from the head office SAP server
 → Use case 3: The staff complains that it takes several minutes to print a delivery note.

- Printer was tested before at head office and was working perfect!
- A bandwidth problem?
- Bandwidth has already been
 increased from 500 kbps to 1Mbps
- The Wireshark Expert does not show
 any relevant anomalies
- Only ~ 2% TCP retransmission
- No 'window zero' or 'window full' symptoms
- → Live demo: Slow Printing.pcap

Conclusion:

- The window size of the printer is too small and limits the speed
- To calculate the minimum required window size, use a BDP calculator: <u>TCP Bandwidth Delay Product calculator</u>

+

The challenge of Network Troubleshooting

Difficult tasks are often referred to as looking for a **needle in a haystack**.

But Network Troubleshooting is finding the needle in a needle stack.

LEUTER

rvices

That's easy!

Use a strong magnet!

That's challenging!

Learn how to use

Ingenious but little-known Wireshark functions

Wireshark Profiles:

- One of the most useful capability of Wireshark to speed-up troubleshooting
- A convenient way to store your **personalized** Wireshark GUI
- In a profile, you can have your colums, colors, filters and many other settings
- No need to save, all your changes are **stored automatically** to the active profile
- Profiles can be **exported** to use them on other computers
- Profiles can be **imported** from other PCs or downloaded from the Internet

Andrew Walding from CellStream, Inc. has created dozens of Wireshark profiles:

→ <u>https://github.com/amwalding/wireshark_profiles</u>

les amwalding Add files via upload		227dc13 · 2 weeks ago 🕚
🗋 ARP.zip	Add files via upload	last month
BGP_Default.zip	Add files via upload	4 months ago
Better Default with Diagram.zip	Add files via upload	last year

Walter Hofstetter from AnyWeb has explained the most useful Profiles in a document.

→ Available after the Packet Fest on https://www.ntop.org/

	Default	LNS MGCP
	Bluetooth	LNS MPLS
	Classic	LNS Multicast with VLAN
	LNS BICC ISUP	LNS No Reassembly
	LNS Diameter	LNS OpenFlow1.0
	LNS DOCSIS	LNS OSPF
	LNS Dual Interfaces	LNS QUIC
•	LNS Ethernet	LNS RTP
	LNS Ethernet DNS	LNS SCTP
	LNS Ethernet ESP	LNS SIP
	LNS Ethernet ICMP DNS	LNS Skype
	LNS Ethernet Netflow	LNS SMB
	LNS Ethernet SNMP	LNS SMB 2
	LNS Ethernet TCP	LNS SPBM
	LNS Ethernet TCP Diagram	LNS Token Ring
	LNS Ethernet UDP	LNS USB
	LNS GRE Tunnel	LNS VLAN
	LNS H.323	LNS VoIP
	LNS H225	LNS VoIP Alcatel
	LNS HTTP	LNS VRRP
	LNS IPv6	LNS VXLAN or GRE
	LNS IS-IS	LNS WLAN CAPWAP
	LNS LDAP	LNS WLAN PPI
		LNC WI AND

My Wireshark Profiles

LEUTER'

Ne

ervices

Ingenious but little-known Wireshark functions

Wireshark Profiles (cont):

- Wireshark offers a new, fancy feature: Automatic Profile Switching
- This allows a profile to be **automatically activated** when a trace file is opened
- 1. Select an **existing profile** or create a **new one**
- 2. Add Auto Switch Filter. Use any Display Filter as condition
- 3. Select **how many packets** in a trace file are **searched** for the condition.
- IIn this example, when a trace file is opened, the first 30 packets are scanned for the vxlan or gre condition
- If one of these first packets matches the condition, the profile is activated
- → Live demo: VXLAN Ping Start.pcapng

Ingenious but little-known Wireshark functions

Wireshark Filters:

Ethernet

rvices

LEUTERI

Nе

Capture Filter:

ether host 00:11:95:b7:e0:3e ether src 00:11:95:b7:e0:3e ether dst 00:11:95:b7:e0:3e

host 192.168.178.1 src host 192.168.178.1 dst host 192.168.178.1

net 192.168.178.0 mask 255.255.255.0 net 192.168.178/24

arp not ip tcp udp port 138

Operators: not, and, or

http://wiki.wireshark.org/CaptureFilters or Google: tcpdump filters

Display Filter:

eth.addr == 00:11:95:b7:e0:3e eth.src == 00:11:95:b7:e0:3e eth.dst == 01:00:5e:00:00:09

ip.addr == 192.168.178.1 ip.src == 192.168.178.1 ip.dst == 192.168.178.1

ip.addr == 192.168.178.0/24 ip.host contains "192.168.178"

arp not ip tcp udp.port == 138

Operators: not, and, or

http://wiki.wireshark.org/DisplayFilters

LEUTER Ne

rvices

Ingenious but little-known Wireshark functions

Wireshark Filters (cont):

• Example Display Filter: (ip.addr == 130.177.80.201) && (tcp.dstport == 445)

📕 (ip.a	ddr == 130.177.80.20	l) && (tcp.dstport == 445)				
No.	Time	Source	Destination	n Protocol	Length	Info
L 16	5.2940	82 130.177	.80.201 130.177.1	52.23 SMB	134	Trans2 Request, QUERY_PATH_INFO, Query File Basic Info,
18	5.3006	39 130.177	.80.201 130.177.1	52.23 SMB	156	Trans2 Request, QUERY_PATH_INFO, Query File Basic Info,
5						

• Go to → Edit → Copy → Display filter as pcap filter

Go to → Capture → Options → select Interface and paste the copied filter

_ v	Vire	shark · Capture Options								_		\times
Inj	put	Output Options										
Г		Interface	Traffic	Link-layer Header	Promiscu	Snaplen (B)	Buffer (MB)	Monitor	Capture Filter			
>		Intel(R) Dual Band Wireless-AC 7260: WLAN		Ethernet	\checkmark	default	2					
>		Intel(R) Ethernet Connection I217-LM: Ethernet		Ethernet		default	2	_	ip host 130.177.80.201 && tcp dst port 445			
	Ena	able promiscuous mode on all interfaces 🛛 Ena	ble monitor mode on all 802.	11 interfaces						Manage	Interface	·s
												_
Ca	ptui	re filter for selected interfaces: 📜 ip host 130.1	77.80.201 && tcp dst port 44	5					× •	C	Compile Bl	PFs
									Start C	lose	Hel	р
_												

- Wireshark offers a new filter feature:
 Display to Capture Filter Translator
- It translates the **Display Filter syntax** to the **Capture Filter syntax**
- Wireshark at present supports ~3'000 protocols and ~250'000 Display Filters
- Capture filters are based on TCPdump and offers < 1'000 filters
- → Therefore, **not all display filters** can be translated to capture filter

Hope you learned something useful

Our **public courses** are held at:

AnyWeb Training

Cisco Certified Learning Center Advanced Courses in Zürich Oerlikon

Ask for a **company course** or register for the newsletter:

Thank you for your attention