Practical Monitoring with ntopng

Matteo Biscosi

ntop

Agenda

- Scenario explaination
- How to start and configure ntopng
- ClickHouse or not?
- Timeseries
- Enchant the Analysis

Scenario

- Needs: monitor an entire network (the size of the network does not matter); also the data needs to be seen even after some days (in case of attacks or network analysis)
- Various switches/routers are present in the network
- All the traffic is forwarded by these devices to a single machine by using NetFlow/sFlow

Solutions

- Solution 1:
 - Used in cases the amount of traffic is not too high (depends on the server specifics)
 - In case the network is not heavily segmented
- Solution 2:
 - Used in scenarios where the amount of traffic is quite high (100+ Gbps)
 - The network is quite segmented (e.g. a lot of subnets) and it's requested to have a good 'representation' of the network

Configure the Switches/Routers

- Configure the router to forward in NetFlow (usually more info are provided) or sFlow (less info are provided, used in cases where the amount of traffic is high, in combo with packet sampling) format the traffic
- Forward the traffic towards the server(s) where the probe is

Note: check the port where the switches/routers are sending the NetFlow/ sFlow to

- In case of high traffic send the traffic of each device (switch/router) to a different port

Configure nProbe

- On the receiving server, configure one or more nProbe(s) (one for each port) in order to receive the device traffic
- Configure the nProbe in order to forward the traffic towards ntopng

(Luca will talk more in depth about nProbe configurations and use cases)

Configure nProbe

```
#
      This is a sample configuration file for using nProbe in combination with ntopng,
     exporting flows over ZMQ from nProbe to ntopng.
#
     You can enable this configuration by renaming this file to nprobe.conf and restarting
#
     the nprobe service.
#
#
    -i|--interface
#
     Specifies the physical network interface that nProbe will use to perform the
#
     monitoring. To disable monitoring from physical interfaces and use nProbe in
#
     collector-only mode specify -i=none and use the -3|--collector-port option.
#
#
-i=none
    -3|--collector-port
#
    Specifies the port that is being used by a NetFlow exporter to send NetFlow to nProbe.
#
    Multiple NetFlow exporters can simultaneously send data to nProbe using the same port.
#
    If you are processing traffic from an interface with -i please comment this option.
#
--collector-port=6363
#
     --zmq
     Specifies the ZMQ endpoint for delivering flows to ZMQ subscribers.
--zmq=tcp://*:5556
```


Configure nProbe

- nProbe configuration file can be found in /etc/nprobe/nprobe.conf
- The configuration file:
 - -i: specify the network interface to capture packets from, in case of flows, the 'none' needs to be specified
 - --collector-port: specify the port where flows are sent (e.g. 6343)
 - -zmq: specify the host:port where the flows are forwarded (--ntopng, in case it is used in combination with ntopng)

Configure ntopng

```
-i|--interface
#
    Specifies the network interface or collector endpoint to be used by ntopng for network
    monitoring. On Unix you can specify both the interface name (e.g. lo) or the numeric
#
    interface id as shown by ntopng -h. On Windows you must use the interface number instead.
     Note that you can specify -i multiple times in order to instruct ntopng to create multiple interfaces.
#
-i=tcp://127.0.0.1:5556
    -m|--local-networks
    ntopng determines the ip addresses and netmasks for each active interface. Any traffic on
    those networks is considered local. This parameter allows the user to define additional
     networks and subnetworks whose traffic is also considered local in ntopng reports. All
#
     other hosts are considered remote. If not specified the default is set to 192.168.1.0/24.
#
     Commas separate multiple network values. Both netmask and CIDR notation may be used,
#
     even mixed together, for instance "131.114.21.0/24,10.0.0.0/255.0.0.0".
-m="10.10.123.0/24=Milan,10.8.124.0/24=Paris,10.7.10.0/24=Rome,10.6.0.0/24=Florence"
    -X|--max-num-flows
    Set max number of active flows (default: 131072)
-X=500000
    -x|--max-num-hosts
    Set max number of active hosts (default: 131072)
-x=500000
```

#

Configure ntopng

- ntopng configuration file can be found in /etc/ntopng/ntopng.conf.
- The configuration file:
 - -i: specify the network interface to capture packets/flows from, for example in case of nProbe, specify the IP:PORT where nprobe is exporting flows to
 - -m: specifies the local networks
 - -x/-X: specifies the maximum hosts/flows ntopng should expect to have on each interface

Configure ntopng/nProbe

- All the set of available options can be found in the ntopng/nprobe documentations
- <u>https://www.ntop.org/guides/nprobe/cli_options.html</u>
- <u>https://www.ntop.org/guides/ntopng/cli_options/cli_options.html</u>

Start ntopng/nProbe

- ntopng and nProbe can be start as services (suggested) by using systemctl or systemd (Linux)
- start/enable ntopng service: # sudo systemctl start ntopng # sudo systemctl enable ntopng
- start/enable nprobe service: # sudo systemctl start nprobe # sudo systemctl enable nprobe
- After starting both services connect to the ntopng Web Interface

http(s)://NTOPNG_HOST_IP:PORT

• example (the default ntopng port is 3000):

http://192.168.2.97:3000/

Start ntopng/nProbe

- In case multiple nProbes needs to be started, one config. file per nprobe needs to be created (in /etc/nprobe/ folder)
- Each config. file needs to have a different name, always starting with 'nprobe-', e.g.:
 - nprobe-eno1.conf
 - nprobe-router1.conf
- For each config, start a different service: # sudo systemctl start nprobe@eno1 # sudo systemctl enable nprobe@eno1

sudo systemctl start nprobe@router1 # sudo systemctl enable nprobe@router1

Result

n	Local •	• view:all	• \$	1.20 Mbps 120.00 Kbps 🚺 1.4КΞ	A 19 1 1 1 1 3K:	= ntop 🌢
Dashboard						
Monitoring	2 Engaged Alert	:s			19 Active Hosts	
Alerts						
Flows ' Hosts ' Flow Exp. Flow Exp. Maps ' Interface	View:all - Sent	02/05/2025 16:45:00	1cp://*:5556c - Sent 02/05/2025 16:45:30	tcp://*:5556c - Rcvd v tcp://	/*:6001c - Sent	*:6001c - Rcvd Cp://*:4455c - Sent
Policies Policies Settings	Top Local H	osts	Current Traffic		Top Remote	e Hosts Current Traffic
	devele			29.80 Mbps		
(B) •	super			14.90 Mbps		
Help	192.168.2.123			14.80 Mbps		
	localhost			827.00 Kbps		
	rpi3			10.80 Kbps		
	192.168.2.106			795.70 bps 02/05/2025 16:45:03 - 16:50:03		
	Top Local H	osts 1 Week	Ago		Top Remote	e Hosts 1 Week Ago
	Host	V	olume		Host	Volume

More Tuning: ClickHouse

- Now it is possible to see all the traffic, however we can do much more!
- Is it required to have those flows forwarded by the devices (switches/routers) accessible even in the future (for example, be able to access data from a week ago)?
- Configure the -F option in the ntopng configuration file
- ntopng is able to export flows to various DB:
 - ClickHouse (suggested)
 - Syslog
 - Kafka
 - Elasticsearch

ClickHouse

- The option is:
 - clickhouse;<host[@[<tcp-port>,]<mysql-port]|socket>;<dbname>;<user>;<pw>
- Add to the configuration file the right option (in case of localhost as host, standard port and standard username/password, simply add 'clickhouse'):
 - -F=clickhouse

Historical Flows

- Now in the Flows menu, a new option should be available: Historical
- Here it is possible to navigate through already expired flows

Historical Flows

	Info	Pkts	Bytes	Thpt	Cli ASN	Srv ASN	Category
46 💶 컱 ff02::1:2 M :		1	98 Byt	tes 784.00 bp:	s No ASN	No ASN	Network
er 🔃 :freeciv 💻		6	384 Byt	tes 40.42 bp:	s No ASN	No ASN	Unspecifi
r 🖪 :freeciv 🗖		6	384 Byt	tes 40.42 bp:	s No ASN	No ASN	Unspecifi
er 🗈 :freeciv 🗖		6	384 Byt	tes 40.42 bp:	s No ASN	No ASN	Unspecifi
r 🖪 :freeciv 🗖		4	256 Byt	tes 39.38 bp:	s No ASN	No ASN	Unspecifi
er 🔲 :freeciv 💻		4	256 Byt	tes 39.38 bp:	5 No ASN	No ASN	Unspecifi
er 🖪 :freeciv 🗖		4	256 Byt	tes 39.38 bp:	5 No ASN	No ASN	Unspecifi
er 🔲 :freeciv 🗖		4	256 Byt	tes 39.38 bp:	5 No ASN	No ASN	Unspecifi
er 🔲 :freeciv 💻		4	256 Byt	tes 39.38 bp:	5 No ASN	No ASN	Unspecifi

Historical Flows

Possible actions

Top L7 A	pplications •	Top Prot	ocols • Top	o Clients 🔹	Top Servers *	Top Flow	/ Exporters	• Top In	fo *
Actions	Begin	End	Duration	Protocol	Application	Score	QoE	Status	Flow
	17:04:40	17:04:40	< 1 sec	UDP	DHCPV6	100	.atl	ACL Vi	fe80::ec4:7aff:fecc:4c53 🚺 :5
	17:03:08	17:04:23	01:15	тср	Unknown	220	ail	ACL Vi	devele 🚺 :37126 🗖 🔁 supe
	17:03:10	17:04:25	01:15	ТСР	Unknown	220	al	ACL Vi	devele 🚺 :37412 🗖 🔁 supe
	17:03:11	17:04:26	01:15	ТСР	Unknown	220	al	ACL Vi	devele 🚺 :37438 🎞 컱 supe
	17:03:27	17:04:18	00:51	ТСР	Unknown	220	al	ACL Vi	devele 🚺 :36604 🎞 컱 supe
	17:03:28	17:04:19	00:51	ТСР	Unknown	220	al	ACL Vi	devele 🔃 :36690 🗔 🔁 supe
	17:03:28	17:04:19	00:51	ТСР	Unknown	220	al	ACL Vi	devele 🚺 :36704 🗖 🔁 supe
	17:03:28	17:04:19	00:51	ТСР	Unknown	220	al	ACL Vi	devele 🔃 :36638 🗔 🔁 supe
≣੶	17:03:29	17:04:20	00:51	ТСР	Unknown	220	al	ACL Vi	devele 🚺 :36768 🎞 컱 supe

Tuning ClickHouse

• It is important to know that each flow, when saved on the DB, occupy some disk, so it is important to tune the Data Retention

Dashboard	Local · Oview:all ·	256.80 Kbps 141.50 Kbps 256.80 Kbps Search	₽- ±- 6										
Monitoring	Q Search Preferences	ClickHouse											
A '		ClickHouse Flows/Alerts Data Retention	30										
Alerts	Active Monitoring	Number of days to keep raw (unaggregated) flows (if enabled) and alerts. Default: 30 days.											
Flows	Alerts												
L ·	Applications	ClickHouse Aggregated Flows Data Retention											
Hosts	Behaviour Analysis	Number of days to keep aggregated flows informations (it must be larger than unaggregated flows retention). Default: 60 days.											
Flow Exp.	Cache Settings												
•	ClickHouse	ClickHouse Limit Aggregated Flows											
Maps	Flows Dump	Number of maximum aggregated flow entries to insert every hourly dump.	10000										
Interface	Logging												
•	Message Broker	ClickHouse Minimum Aggregated Flow Traffic											
Policies	Misc	Discard aggregated flows whose size is less that the specified value (in KBytes).	1										
🔹 🔸 Settings	Users												
	Preferences	Include Alerted Flowe											
Developer	Blacklists	Include all alerted flows in aggregated flows.											
🕲 🔸	Configurations	Dump Pran Interfaces Flows											
	Applications and Categories	Dump flows accounted on a pcap interface into ClickHouse. Alerts are always dumped.	_										
	Reports												
	SNMP		Save										
	Telemetry												

Tuning ClickHouse

- Also sometimes ClickHouse uses a lot of RAM/CPU/Disk without reason, so it's highly suggested to set a couple of things
- Check the Disk used by ClickHouse: # clickhouse-client # use ntopng # SELECT table, formatReadableSize(sum(bytes)) AS size, min(min_date) AS min_date, max(max_date) AS max_date FROM system.parts WHERE active GROUP BY table
- Reduce the table TTL of the system tables: # ALTER TABLE system.XXX MODIFY TTL event_date + INTERVAL 3 DAY; # ALTER TABLE system.query_log MODIFY TTL event_date + INTERVAL 3 DAY; # ALTER TABLE system.asynchronous_metric_log MODIFY TTL event_date + INTERVAL 3 DAY; # ALTER TABLE system.metric_log MODIFY TTL event_date + INTERVAL 3 DAY; # ALTER TABLE system.trace_log MODIFY TTL event_date + INTERVAL 3 DAY;
- https://github.com/ntop/ntopng/blob/dev/doc/README.clickhouse.md

Ready

- Everything is done now!
- Explore the currently active flows
- Explore the historical flows
- Explore the local/remote hosts

25

More Analysis

- An important step in the network analysis are also timeseries
- There are a lot of timeseries in ntopng and they can greatly enchant the network analysis

Timeseries

- Before jumping to the timeseries, start collecting the interesting ones
- Jump to the preferences and enable/disable the important ones

Timeseries Drivers

- Two drivers are available in ntopng to store timeseries:
 - RRD
 - InfluxDB
- Different use cases:
 - RRD: faster and uses very few RAM/CPU/Disk, however it can only be on the same machine where ntopng is
 - InfluxDB: slower and in can use a lot of resources, however in can be placed on a different machine; also it is a lot more flexible

Timeseries

Tops (if available)

Enchant the analysis

- It is possible to further increase the analysis and 'control' over the network
- Why only check data/flows?
- Move to also check the devices, by using SNMP

SNMP

- It is possible to monitor the status of the various devices by using SNMP
- ntopng supports various MIBs:
 - MIB II
 - LLDP/CDP MIB
 - Bridge MIB
 - netSNMP
 - Cisco QoS
 - Cisco CPU/Memory MIB (in development)

Advantages of using SNMP

- ntopng polls the bridge MIB that is used to discover the MAC addresses observed on a network interface
- ntopng allows interface traffic to be compared for similarity; if one interface is miss behaving and has a similarity with an other one, are both interfaces affected?
- With the support of LLDP and CDP it's possible to build maps of devices

Advantages of using SNMP

Y	SIMIVIE	Devices /	FIOCUIVE 3	witch 2510	0-24 (152)	100.2.105)	intenaces	050

Show 10 🖌 entries			😂 Search	:
Interface Index 🔶	MAC Address	IP Associated	Manufacturer	Device Type
24	00:30:18:0A:49:49	192.168.2.123	Jetway Information Co., Ltd.	
22	AC:1F:6B:9F:29:39		Super Micro Computer, Inc.	
21	AC:1F:6B:AD:6A:2C		Super Micro Computer, Inc.	
19	00:0C:29:0A:8F:CE		VMware, Inc.	
19	7C:C2:55:50:F0:62		Super Micro Computer, Inc.	
19	B8:27:EB:4D:44:C8		Raspberry Pi Foundation	Computer 🖵
19	0C:C4:7A:CC:C4:4A		Super Micro Computer, Inc.	
19	FC:B4:67:0D:F1:00		Espressif Inc.	
19	00:E0:2B:00:00:01		Extreme Networks Headquarters	
19	4C:A9:19:B9:8B:E5		Tuya Smart Inc.	
Showing 1 to 10 of 21 entries	I			
			« < 1	2 3 > »

😵 SNN	IP Devices	/ X435-24P-4S	(192.168.2.237)	Interfaces	Usage	Topology	<	44		A	Ż.
		/ // // // //		 THE REPORT OF THE PARTY OF THE	- sage	iopolog,			_		

					10	▼ □ 2 0-
SNMP Device	Interface Index	Average Traffic	SNMP Device	Interface Index	Average Traffic	Similarity Score
ProCurve Switch 2510B-24	22	0.56 bps	X435-24P-4S	X435-24P-4S Port 23 (1:23)	0.00 bps	96.4
ProCurve Switch 2510B-24	22	0.56 bps	X435-24P-4S	X435-24P-4S Port 21 (1:21)	0.00 bps	96.4
rc-hsoffice-002.corp.prodshops.ru	Tunnel20 (Tu20)	0.12 bps	X435-24P-4S	X435-24P-4S Port 21 (1:21)	0.00 bps	97.8
rc-hsoffice-002.corp.prodshops.ru	Tunnel20 (Tu20)	0.12 bps	X435-24P-4S	X435-24P-4S Port 23 (1:23)	0.00 bps	97.8
EdgeRouter-X-5-Port	lo	6.40 bps	X435-24P-4S	X435-24P-4S Port 18 (1:18)	4.24 bps	83.3
ProCurve Switch 2510B-24	8	1.16 bps	X435-24P-4S	X435-24P-4S Port 18 (1:18)	4.24 bps	80.4
ProCurve Switch 2510B-24	5	1.16 bps	X435-24P-4S	X435-24P-4S Port 18 (1:18)	4.24 bps	80.4

←

... and more SNMP

- Also in the latest version it is possible, by using SNMP, to poll the speed of the various SNMP interfaces
- Comparing the speeds with the bytes sent/rcvd collected from the other MIBs, it is possible to understand if an interface is congested

SNMP Usage

SNMP 🔊	🔊 SNMP Devices 🏫 Interfaces Rules Usage 🕸 🛕														←									
Last 6 H	ours 🗸 🛱	02/05/2025 12:0	3 →	02/05/2025	18:03	Apply	← -	• •	٩ ٢	.														
	Top Congested Interfaces																							
100.0 %																								
80.0 %	-											_	-						-					
60.0 %								_									_	-						
40.0 %																								
20.0 %	-							_				_	-				_	+			_			
0.0 %																								
																	10 🗸] 🗖	C	0 -	Searc	ch:		
Actio	Device IP	Device Name	Interface	Interfa	ce Alias	Туре		Li	nk Spe	ed	Avg S	core (Pe	er H)	Co	ngest	ion Ra	ite	Mir	n	Max	A	/erage	Last Va	lue
	192.168.67.247	ntop2	enp179s(Of1		In Us	age 😃		10 Gbit	t 🌣		13					0.0 9	6 4	4.0 %	12.0	%	6.9 %	6	4.0 %
	192.168.67.247	ntop2	enp179s()f1		Out l	Jsage 🤇	•	10 Gbit	t 🌣		13					0.0 9	6 (0.0 %	0.0	%	0.0 9	6	0.0 %
	192.168.67.247	ntop2	enp179s(OfO		Out l	Jsage 🤇		10 Gbit	t 🌣		13					0.0 9	6 (0.0 %	0.0	%	0.0 9	6	0.0 %
[≡-	192.168.67.247	ntop2	enp179s(0f0		In Us	age 😃		10 Gbit	t 🌣		20					0.0 9	6 21	1.0 %	37.0	%	26.5 9	6	24.0 %
	192.168.67.247	ntop2	bond1			Out L	Jsage 🤇		1 Gbit	\$		13					0.0 9	6 (0.0 %	0.0	%	0.0 9	6	0.0 %

SNMP Usage

- If the interface speed is collected correctly by SNMP (it is also possible to manually configure it), ntopng is able to detect congested interfaces
- An interface is marked as congested if the usage (Link Speed / Bytes sent-rcvd) is higher or equal than 76%
- Also think about the previous configurations done...
- YES! ClickHouse!
- By comparing the congested interface time period and the historical data, it is possible (if correctly configured) who congested the link

SNMP Usage

Conclusions

- We have seen how to properly configure nProbe/ntopng to analyze a network
- How to store the flows by using a DB (to be able to access those data in the future)
- How to use timeseries to have an idea of the traffic/activities done by hosts, interfaces, ...
- How to also support the devices in order to understand if there is someone filling the link

Questions

Thanks

https://github.com/ntop/ntopng

https://www.ntop.org/

41