
Monitoring Mobile Network
Traffic (3G/LTE)
!
Luca Deri <deri@ntop.org>

ntop and Wireshark

2

ntopng

PF_RING

nProbe n2disk

Network
disk2n

Replay

Live Capture

Read Pcap's

Capture

Overview
• Introduction to mobile traffic monitoring!
• Analysing mobile traffic with Wireshark!
• Monitoring mobile traffic using ntop nProbe,
an open-source traffic monitoring probe.!

• Advanced mobile monitoring topics.

3

Why Mobile Traffic is Interesting?
• Plain (wired or wireless) traffic monitoring is a
topic that has been covered since very long
time and there are many solid monitoring tools
available.!

• Traffic generated by mobile devices is
constantly increasing and it cannot be
monitored using tools not designed for this task.!

• Mobile traffic monitoring does not mean that
this is a just topic for mobile operators: there
are plenty of opportunities for companies
already active in the network monitoring world.

4

Opportunities in Mobile Monitoring [1/2]

• Mobile network monitoring tools are usually
derived from the telecommunication world.!

• Often these tools produce aggregated
metrics (i.e. number of bytes per cell) or
radio-related statistics.!

• Traffic monitoring tools are often not able to
monitor mobile traffic in detail and usually
rely on costly data capture cards or custom
designed FPGA-based board.

5

Opportunities in Mobile Monitoring [2/2]

• Monitoring tools are (usually) proprietary, and
tight to the hardware platform used to
capture data.!

• Monitored data is stored in proprietary format
and usually not available to third party apps
(no open data).!

• Open source mobile traffic monitoring tools
are rare, often just research tools (e.g. thesis
outcome) and not production ready.

6

Motivation
• Bring benefits of open source and open data
to mobile traffic monitoring.!

• Exploit wireshark for mobile-traffic
troubleshooting.!

• Create comprehensive mobile traffic
monitoring tools leveraging on code and
lessons learnt on Internet traffic monitoring.!

• In essence “open” the world of mobile traffic
monitoring as happened with Internet
monitoring.

7

Let’s Start From The End…

8

Who
Where

What

Important: All realtime, using open source software, at 10 Gbit.

Mobile Network Architecture
• Body Level One!
◦Body Level Two!
!Body Level Three!
! Body Level Four!
! Body Level Five

9

Monitoring!
Interfaces

Core Gateways

GPRS Core Network Nodes [1/2]
SGSN (Serving GPRS [General Packet Radio
System] Support Node) is a node responsible
for:!
◦User authentication!
◦Data session management including QoS (based
on subscription type).!
◦Gateway towards the radio access.!
◦Traffic routing towards GGSN.!
◦Management of roaming users.

10

GPRS Core Network Nodes [2/2]
GGSN (Gateway GPRS Support Node) is a
node responsible for:!
◦ Inter-networking between the GPRS network and
external network such as the Internet.!
◦Gateway towards external networks (e.g. the
Internet) identified by an APN (Access Point
Name).!
◦ IP assignment to mobile terminals.!
◦Billing and support for lawful interception.

11

Additional Network Nodes
• iDNS (internal Domain Name Server) 
DNS server used to resolve APN an GGSN
addresses to mobile terminals.!

• HLR (Home Location Register) 
Database containing the subscriber profiles.!

• Policy Manager 
Control platform able to interact with network
devices in order to implement access control,
per-user QoS, user charging and billing.

X

Core Network Interfaces
• SGSN-to-GGSN (Gn) Interface  
IP-based network interface between the
SGSN and the GGSN. In 4G networks this
interface is called S11.!

• GGSN-to-PDN (Gi) Interface  
IP-based network interface between the
GGSN and a public data network (PDN) such
as the Internet. In 4G networks this interface
is called S5.

12

Traffic Routing in GPRS Networks [1/2]
• From the Internet, the GGSN is a router to an IP
subnetwork: when incoming (from the Internet) traffic
is received, it checks if the mobile address is active,
and if so, it forwards the traffic to the SGSN gateway
serving the mobile terminal.!

• When egress traffic (to the Internet) is received from
the GPRS code, it routes it to the correct external
network.

13

Traffic Routing in GPRS Networks [2/2]
• On the GPRS network, user traffic is sent in tunnels

that traverse the network backbone.!
• For mobile terminal, it looks as if they are connected

via a router (the GGSN) to the Internet.!
• Properly handling tunnels, allows mobile users to move

inside the mobile network while connected to the
Internet with a permanent IP address (i.e. it does not
change overtime).

14

GPRS Tunnelling Protocol [1/2]
• GTP is the IP-based protocol used inside the
core GPRS network.!

• In essence it is a tunnelling protocol that allows
mobile terminals to move within a GSM/WCDMA
network while connected to the Internet.!

• There are two GTP protocol versions (v0 is
obsolete):!
◦v1: used in 2G/3G/4G networks.!
◦v2: used (for signalling) in 4G networks.

X

GPRS Tunnelling Protocol [2/2]
GTP can be decomposed into:!
• GTP-C used as signalling protocol between the
GGSN and SGSN (Gn interface) as it allows to
activate/deactivate an user session (PDP Context
activation), modify session QoS, update an
existing session.!

• GTP-U used to carry user data (e.g. email,
Facebook, Whatsapp messages) between the
radio access network and the GPRS core
network, and within the GPRS core network.

X

GTP Tunnelling [1/3]
• Every user packet is encapsulated in GTP tunnels (Gn

Interface).!
• Through the use of GTP tunnels, the mobile subscriber

(MS) traffic traverses the GPRS backbone up to the
Internet.

15

GTP Tunnelling [2/3]
• GTP packets contain several encapsulation
layers.!
◦The external IP are those of the GGSN and SGSN.!
◦The GTP packet contains the tunnel-Id that identifies
the user IMSI (International Mobile Subscriber
Identity) stored in the phone SIM.

16

GTP Tunnelling [3/3]

17

User Traffic

GTP Tunnels [1/3]
• A GTP tunnel is necessary for forwarding packets
between an external network (e.g Internet) and a
mobile station (MS). !

• As applications running on a mobile station can
open multiple GTP tunnels, each tunnel has a
NSAPI identifier associated (Network Service
Access Point Identifier.!

• A tunnel Id (TEID - Tunnel Endpoint Identifier)
identifies a GTP tunnel and is defined by two
associated PDP (Packet Data Protocol) contexts
(same principle as in TCP).

X

GTP Tunnels [2/3]
• Tunnels are negotiated with GTP-C (UDP port
2123).!

• A tunnel is setup by a GTP Context Create
PDU and deleted using a GTP Context Delete
PDU.!

• During tunnel creation, all the mobile station
information is exchanged and this is the only
moment where it is possible to observe the
association between a mobile station and an IP
address.

X

GTP Tunnels [3/3]
• GTP-C traffic is just about 10% of the overall
traffic but it is mandatory not to drop any packet
as otherwise the association between tunnel Ids
and mobile users is lost for the duration of the
tunnel.!

• Caveat: for “static devices” (e.g. a water meter
with an embedded GSM modem for remote
access) the GTP tunnel might be created when
the device is installed, and stay active for the
lifetime of the device (e.g. a few years).

X

GTP Support in Wireshark

• Wireshark contains native dissectors for GTP
(v0, v1, and v2).!

• It is able to follow GTP tunnels 
via “Follow UDP Stream”.!

• Wireshark can associate GTP requests with
responses as well decode GTP fields.!

• Each GTP message has a fixed header message
format (e.g. where the IMSI is stored), and a set
of variable fields, each identified by a unique
numeric identifier.

18

GTP-C Context Creation [1/2]

19

SGSN GGSN

GTP-U Tunnel Id (SGSN -> GGSN)
GTP-C Tunnel Id (SGSN -> GGSN)

Unique User (SIM) Identifier

Mobile Terminal Phone Number
Bandwidth Assigned to the Mobile Terminal (Contract)

International Mobile Equipment Identity 
(Unique Mobile Device Identifier)

Radio Cell to which this Mobile Terminal is connected

Associate Request!
with Response

Requested Address Type (IPv4 or IPv6)
Session Identifier (0-15)

GTP-C Context Creation [2/2]

20

Same as Request

SGSNGGSN (IP Swap)

GTP-U Tunnel Id (GGSN -> SGSN)
GTP-C Tunnel Id (GGSN -> SGSN)
Assigned IP Address (DHCP-like)

0 Positive/Negative Response

GTP-C QoS

X

GTP-C Mobile Terminal Location
• During GTP-C context creation, the mobile
terminal reports the cell to which it is
currently connected.!
!

!

• Using the Cell LAC (Location Area Code) or
Cell CI (Cell Identifier) it is possible to know
approximately where the terminal is currently
located (no GPS is needed).

21

GTP-C Context Update [1/2]
• When a mobile terminal changes SGSN (move
inside the mobile network), the TEID can change.!

• GTP Direct Tunnel (see later).

22

Current TEID

New TEIDs

Current Location
Direct Tunnel Info

GTP-C Context Update [2/2]

• In the response (if positive) there is a new
tunnel for the reverse direction too.

23

New TEID

3G Direct Tunnel (3GDT) [1/2]
• The 3GDT allows direct data transfer from the Radio
Access Network (RAN) to the GGSN, without passing
through the SGSN (4G is always direct tunnel).

X

W
ith

 3
G

D
T

W
ith

ou
t 3

G
D

T

3G Direct Tunnel (3GDT) [2/2]
• With 3GDT the SGSN is offloaded by some tasks as
GTP-U flows directly (but GTP-C still goes through the
SGSN) decreasing latency and promoting network
scalability.!

• During 3GDT activation/teardown, the GTP-C Context
Update is used to update the TEIDs between the RAN
and the GGSN (~40% more signalling on the GGSN
due to GTP-C Updates).!

• 3GDT is often activated from a mobile device wakes
up, and deactivated when goes to sleep (no data
transfer).

X

GTP-C Context Delete

• GTP-C Delete Context is used to teardown
tunnels (e.g. when a terminal is turned off).

X

GTP-U
• GTP-U are GTP messages whose type is T-PDU.!
• GTP-U carries user traffic tunnelled in GTP data
tunnels previously negotiated with GTP-C.!

• Due to GTP tunnelling, unless the interface MTU
is enlarged, GTP-U might lead to strong traffic
fragmentation.

24

GTP: Monitoring Challenges [1/2]
Due to the nature of GTP, monitoring tools need to
face with many challenges:!
• For no reason GTP-C traffic can be dropped as
this would lead to inability to map user/cells with
user traffic.!

• Traffic Fragmentation. In general traffic can be
fragmented, but with GTP this can happen much
more often in networks where the MTU has not
been enlarged. Fragmentation increases load on
probes and slows down operations.

25

GTP: Monitoring Challenges [2/2]
• Due to the distributed nature of mobile
networks, it is unlikely that all the traffic can be
observed from the same monitoring point.!

• The increasing network speed (also promoted
by 4G networks) requires traffic to be balanced
across multiple monitoring probes.!

• Traffic partition creates an additional issue if
monitored data need to be consolidated into a
single location.

26

Merging+Balancing GTP Traffic [1/3]
• Interface merging is necessary whenever traffic is
split across interfaces (e.g. network tap) or when
multiple interfaces (e.g. master and fail-over
interfaces) are monitored.!

• Once traffic is merged, it needs to be balanced
across monitoring applications in order to share the
load.!

• Due to the nature of GTP traffic, it is necessary to
properly balance traffic in order to send both
direction of the flow (src-to-dst and dst-to-src) to
the same monitoring probe.

27

Merging+Balancing GTP Traffic [2/3]
• Depending on GTP PDUs we need to balance
on the inner or outer IP addresses.

28

G
TP

-C
G

TP
-U

Merging+Balancing GTP Traffic [3/3]
• Balancing using the tunnelId as key is not a good idea
as each direction of the tunnel as a different TEID.
Thus tunnel coherency should be implemented by
keeping the tunnel association of each direction via a
stateful system.!

• Better (as it’s a stateless activity) to use IPs for
balancing traffic across probes, and send each probe
a portion of the traffic.!

• If necessary, in the market there are products (e.g.
Gigamon) that allow GTP-C/U of selected IMSIs to be
sent to a specific egress interface.

29

PF_RING [1/2]
• PF_RING is a home-grown open source
packet processing framework for Linux.!

• It is split in a kernel module and user-space
libs.

30

Read
Index

Write
Index

Incoming Packets

Outgoing Packets Userspace

Kernel

Socket
(ring)

Network
Adapter

mmap()

Socket
(ring)

PF_RING

Application A Application Z

PF_RING [2/2]
It comes in two flavours:!
◦ In-kernel packet capture: packets are received and
processed inside the Linux kernel, then are
dispatched using memory-map to user-space. This
operating mode is good for 1 Gbit interfaces.!
◦Zero-copy: once the device is open, packets are
ready directly by user-space applications without
passing through the kernel. This is the preferred
solution for aggregate traffic over 4/5 Gbit.

31

PF_RING and GTP [1/5]
• The PF_RING kernel module comes with
support for “ring clustering” that is the ability to
federate applications each analysing a portion
of the traffic.

32

Clustered
PF_RING
Socket

Application Application Application Application

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

PF_RING

Kernel
User-space

PF_RING and GTP [2/5]
• Applications (e.g. GTP probes) opening
PF_RING sockets can merge (via PF_RING),
traffic from multiple interfaces.!

• Ingress traffic can be balanced in many ways
(per-flow, round robin…) including 5 tuple
(protocol, ip/port src/dst) that:!
◦ In case of GTP-U uses the user IP/ports!
◦ In case of GTP-C uses the GSNs IP/ports.

33

PF_RING and GTP [3/5]
• For 10G interfaces, in-kernel packet capture
is overkilling and thus it is necessary to
bypass it.!

• On top of PF_RING ZC  
(Zero Copy) it is possible  
to efficiently read packets 
in zero-copy and  
distribute them to  
applications (including).

34

Libzero

Libzero-based
Application

Libzero

Libzero-based
Application

Libzero

Libzero-based
Application

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Packet

DNA NIC
A

DNA NIC
B

DNA NIC
C

DNA NIC
D

Versatile Traffic Balancer/Fan-Out (No RSS)

PF_RING and GTP [4/5]
• Our software GTP balancer can aggregate and
balance coherently GTP traffic from multiple 10 Gbit
interfaces.!

• It can also support packet fan-out in zero-copy to
multiple applications if necessary.!

• All in software (no hardware NICs or balancers are
used), leveraging on the PF_RING library.

35

PF_RING and GTP [5/5]

36

	•	 balancer -i “dna0,dna1,dna2″ -c 10 -n 3,1,1 -r 0	

	

 •	 nprobe -i dnacluster:10@0 -g 1	

	

 •	 nprobe -i dnacluster:10@1 -g 2	

	

 •	 nprobe -i dnacluster:10@2 -g 3	

	

 •	 n2disk -i dnacluster:10@3 ….	

	

 •	 wireshark -i dnacluster:10@4 …

nProbe [1/3]
• nProbe is a high-speed (multi 10G) open
source traffic probe/collector developed by
ntop.

37

nProbe

Log Managers

Redis

Incoming Packets
(Raw Traffic)

NetFlow/IPFIX
sFlow

n
Flow

Export

Disk
Database

MySQL/SQLite
Raw Files

JSON

nProbe [2/3]
• Originally designed as a drop-in replacement
of a physical NetFlow probe, currently it can:!
◦Convert flow format (sFlow-to-NetFlow/IPFIX) or
version (e.g. v5 to v9).!
◦High-speed packet-to-flow processing.!
◦Leverage on in-memory-databases to maintain flow
state (and GTP session) coherency.!
◦Ability to pre-compute data for realtime traffic
aggregation.

38

nProbe [3/3]
• It has an open architecture extensible by
means of plugins that include:!
◦GTP (v0, v1, v2) plugins.!
◦VoIP (SIP and RTP) plugins for analysing voice
signalling (who’s calling who/when) and voice
quality (Jitter and pseudo-MOS/R-Factor).!
◦HTTP(S), Email (SMTP, IMAP, POP3), Radius,
Database (Oracle and MySQL), FTP, DHCP, and
BGP.

39

nProbe Flow Format [1/2]
• nProbe supports flexible NetFlow, that allows
data export format to be customised at runtime.!

• nProbe allow users to define a template on the
command line.!

• In addition to the standard fields (IP, port…),
nProbe can export many other fields such as
packet stats (TTL and size distribution), network/
application latency, geolocation, packets
retransmitted/out-of-order, tunnel information,
and DPI (Deep Packet Inspection).

40

nProbe Flow Format [2/2]
• nProbe plugins also define datatypes that
can be exported via NetFlow v9/IPFIX.!

• Example of GTPv1 Datatypes:

41

Plugin GTPv1 Signaling Protocol templates:
[NFv9 57692][IPFIX 35632.220] %GTPV1_REQ_MSG_TYPE GTPv1 Request Msg Type
[NFv9 57693][IPFIX 35632.221] %GTPV1_RSP_MSG_TYPE GTPv1 Response Msg Type
[NFv9 57694][IPFIX 35632.222] %GTPV1_C2S_TEID_DATA GTPv1 Client->Server TunnelId Data
[NFv9 57695][IPFIX 35632.223] %GTPV1_C2S_TEID_CTRL GTPv1 Client->Server TunnelId Control
[NFv9 57696][IPFIX 35632.224] %GTPV1_S2C_TEID_DATA GTPv1 Server->Client TunnelId Data
[NFv9 57697][IPFIX 35632.225] %GTPV1_S2C_TEID_CTRL GTPv1 Server->Client TunnelId Control
[NFv9 57698][IPFIX 35632.226] %GTPV1_END_USER_IP GTPv1 End User IP Address
[NFv9 57699][IPFIX 35632.227] %GTPV1_END_USER_IMSI GTPv1 End User IMSI
[NFv9 57700][IPFIX 35632.228] %GTPV1_END_USER_MSISDN GTPv1 End User MSISDN
[NFv9 57701][IPFIX 35632.229] %GTPV1_END_USER_IMEI GTPv1 End User IMEI
[NFv9 57702][IPFIX 35632.230] %GTPV1_APN_NAME GTPv1 APN Name
[NFv9 57703][IPFIX 35632.231] %GTPV1_RAI_MCC GTPv1 RAI Mobile Country Code
[NFv9 57704][IPFIX 35632.232] %GTPV1_RAI_MNC GTPv1 RAI Mobile Network Code
[NFv9 57814][IPFIX 35632.342] %GTPV1_RAI_LAC GTPv1 RAI Location Area Code
[NFv9 57815][IPFIX 35632.343] %GTPV1_RAI_RAC GTPv1 RAI Routing Area Code
[NFv9 57816][IPFIX 35632.344] %GTPV1_ULI_MCC GTPv1 ULI Mobile Country Code
[NFv9 57817][IPFIX 35632.345] %GTPV1_ULI_MNC GTPv1 ULI Mobile Network Code
[NFv9 57705][IPFIX 35632.233] %GTPV1_ULI_CELL_LAC GTPv1 ULI Cell Location Area Code
[NFv9 57706][IPFIX 35632.234] %GTPV1_ULI_CELL_CI GTPv1 ULI Cell CI
[NFv9 57707][IPFIX 35632.235] %GTPV1_ULI_SAC GTPv1 ULI SAC
[NFv9 57804][IPFIX 35632.332] %GTPV1_RESPONSE_CAUSE GTPv1 Cause of Operation

nDPI

42

• nDPI is a ntop-maintained GPLv3 deep packet
inspection library used in nProbe to dissect traffic
and thus classify application protocols.!

• Supported protocols (~170) include:!
◦P2P (Skype, BitTorrent)!
◦Messaging (Viber, Whatsapp, MSN, The Facebook)!
◦Multimedia (YouTube, Last.gm, iTunes)!
◦Conferencing (Webex, CitrixOnLine)!
◦Streaming (Zattoo, Icecast, Shoutcast, Netflix)!
◦Business (VNC, RDP, Citrix, *SQL) 

nProbe and GTP [1/5]
• The nProbe core is able to natively handle and
decode tunnelled (e.g. PPP, PPPoE, GRE,
L2TP, Mobile IP) and tagged packets (e.g.
802.1Q, MPLS), and thus generate flows on
GTP-U packets.!

• The GTP plugins are responsible for decoding
GTP-C signalling packets, and save on in-
memory-database (redis) signalling information
such as TEID, Cell-Id, and IMSI.

43

nProbe and GTP [2/5]
• User-to-traffic correlation is performed in realtime
by the probe, and not (as often happens) by the
collector often in post-processing (e.g. searching
on a database) and thus not in realtime.!

• GTP-C traffic is spread across all probes (i.e. it
can be processed in parallel with respect to
sending it to one probe) as well as GTP-U.!

• GTP tunnel-to-user association is kept in redis
and cached in individual probes for reducing the
number of redis communications.

44

nProbe and GTP [3/5]

45

nProbe

Gn/Gi

GTP Traffic Logs

GTP-Encapsulated Traffic

nNetFlow/IPFIX
Collector

nProbe and GTP [4/5]

46

n
nProbe

n
nProbe

n
nProbe

n
nProbe

GTP Traffic Balancer (only for 10G, not needed for 1G)

Ingress Traffic

GTP Sessions

Local Memory Cache

GTP Signalling

Master GTP Cache

nProbe and GTP [5/5]
• Example of GTP cache manipulation:

47

n
nProbe

GTP Create TEID=Cell LAC/CI;User IP

GTP Update TEID=Cell LAC/CI;User IP

SET

UPDATE

GTP Delete TEID
DELETE

User Traffic TEID
GET

(if not in nProbe's cache)G
T

P-
U

G
T

P-
C

nProbe and Redis [1/4]
• nProbe opens several connections to the
redis cache.!
◦Write to cache: these operations have lower priority
and are queued and executed in batches.!
◦Read from cache: high-priority synchronous (i.e.
the probe cannot continue the operations until an
answer is received) operation performed when the
probe needs to export GTP-U data.

48

nProbe and Redis [2/4]
• In average a single redis process can handle up to
50/70k requests/sec in total.!

• It is a good practice to run redis on the same host
where the probes are working to avoid putting
network latency into the equation and thus reduce
the number of redis operations.!

• In order to add redundancy and increase resiliency
it is possible to setup a redis cluster or use a proxy
(e.g. https://github.com/twitter/twemproxy) to share
keys across the various nodes.

49

nProbe and Redis [3/4]
Advantages of using redis:!
◦The GTP state is kept on a central location
regardless of the number of probes.!
◦ It can be used to aggregate the traffic monitored by
each individual probe. For instance if it is
necessary to compute the total amount of traffic per
cellId, nProbe can increment the cell-bytes counter
after a flow is expired.

50

nProbe and Redis [4/4]
Disadvantages of using redis:!
◦ It is a central point of failure thus it is important to
use a cluster/proxy.!
◦Read operations are synchronous and thus they
are influenced by the network latency: keep redis
and the nProbe instances on the same host and do
not put them on a WAN.

51

GTP Traffic Reports [1/3]
The probe can produce two type of reports:!
• GTP-C reports contain aggregate signalling
information.!

• GTP-U traffic reports that contain standard flow
fields (e.g. IPs/ports, bytes/packets) in addition to
mobile terminal information (e.g. IMSI and cell Id).!

In essence nProbe handles GTP signalling similar
to what happens with Radius: it is use to map a
user (IMSI) to a traffic (flow) along with metadata
(e.g cell Id).

52

GTP Traffic Reports [2/3]
• GTP-C report

53

StartTime[epoch] Duration(ms)[float] GTP_version[uint] Peers[ascii:64] SeqId[hex:4]
RspCause[ascii:64] c2s_s2c_msg_type[ascii:64] c2s_s2c_teid[hex:20] c2s_s2c_teid_data[hex:20]
c2s_s2c_teid_ctrl[ascii:32] c2s_gsn_addr[ascii:32] APN[ascii:64] IMSI[ascii:32]
MSISDN[ascii:32] IMEI[ascii:32] NSAPI[uint] rai_mcc[uint] rai_mnc[uint] rai_lac[uint]
rai_rac[uint] uli_mcc[uint] uli_mnc[uint] uli_cell_lac[uint] uli_cell_ci[uint]uli_sac[uint]
s2c_gsn_addr[ascii:32] s2c_end_user_ip[ascii:32] s2c_charging_gw[ascii:32] s2c_charging_id[uint]
Req_QoS[ascii:255] Rsp_QoS[ascii:255]

1399325474 0.000 1 194.33.24.58,194.33.27.26 45 Request accepted(128)
CreateContextRequest(16),CreateContextResponse(17) 00000000,0600170A 06001908,00000001 0600170A,
00000044 194.33.24.58,194.33.24.52 orange 23486000002XXXX +44797335XXXX 5 0 0 0 0
 0 0 0 0 0 194.33.26.17,194.33.26.17 10.32.0.36 0.0.0.0 12481267
delay=4,reliability=3,peak=6,precedence=2,mean=31,class=4,del_order=2,del_err_sdu=3,max_sdu=1500,max
_ul=64,max_dl=384,res_ber=7,err_ratio=4,transfer_delay=2,traf_prio=3,guar_ul=16,guar_dl=64,src_stat_
desc=0,sig_ind=0
delay=4,reliability=3,peak=6,precedence=2,mean=31,class=4,del_order=2,del_err_sdu=3,max_sdu=1500,max
_ul=64,max_dl=384,res_ber=7,err_ratio=4,transfer_delay=2,traf_prio=3,guar_ul=16,guar_dl=64,src_stat_
desc=0,sig_ind=0
1399325474 0.000 1 194.33.24.58,194.33.26.17 46 Request accepted(128)
DeleteContextRequest(20),DeleteContextResponse(21) 00000044,0600170A 00000000,00000000
00000000,00000000 0.0.0.0,0.0.0.0 0.0.0.0,0.0.0.0 0.0.0.0 0.0.0.0 0
delay=0,reliability=0,peak=0,precedence=0,mean=0,class=0,del_order=0,del_err_sdu=0,max_sdu=0,max_ul=
0,max_dl=0,res_ber=0,err_ratio=0,transfer_delay=0,traf_prio=0,guar_ul=0,guar_dl=0,src_stat_desc=0,si
g_ind=0
delay=0,reliability=0,peak=0,precedence=0,mean=0,class=0,del_order=0,del_err_sdu=0,max_sdu=0,max_ul=
0,max_dl=0,res_ber=0,err_ratio=0,transfer_delay=0,traf_prio=0,guar_ul=0,guar_dl=0,src_stat_desc=0,si
g_ind=0

GTP Traffic Reports [3/3]
• GTP-U Report (HTTP)

54

Client[ascii:32] Server[ascii:32] Protocol[ascii:8] Method[ascii:8]
URL[ascii:255] HTTPReturnCode[uint] Location[ascii:255] Referer[ascii:255]
UserAgent[ascii:255] ContentType[ascii:96] Bytes[uint] BeginTime[epoch]
EndTimeWithPayload[epoch] FlowHash[ascii:16] Cookie[ascii:255] Terminator[ascii:
4] ApplLatency(ms)[uint] ClientLatency(ms)[uint] ServerLatency(ms)[uint]
ApplicationID[uint] Application[ascii:32] BalancerHost[ascii:32]
ServerIP[ascii:32] RehttpPkts[uint] Client2Server_TEID[ascii:8]
Server2Client_TEID[ascii:8] FlowUserName (User or IMSI/LAC/CCI/CSAC)[ascii:32]
 AdditionalInfo[ascii:32] OOO_Cli2Srv[uint] OOO_Svr2Cli[uint]
POSTParams[ascii:256]

!
10.68.78.155 web.icq.com http GET 302 www.icq.com/whitepages/online?
icq=601004214&img=5 www.google.com Mozilla/5.0 (Linux; U; Android 4.1.2; ru-ru;
GT-I9300 Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile
Safari/534.30 text/html 1170 1399325662 1399325664 838964263 0 U 40.173
 23.091 20.200 7 HTTP 205.188.95.190 1 86048DB0
0001D69D "25001686073XXXX;592;54073;0;183493424" 0 0

Advanced GTP Monitoring [1/2]
• The use of redis allows simple realtime
applications to be created (that would have
monitoring been much more difficult to create
otherwise).!

• Suppose you want to have every 5 minutes
the total amount of application protocol traffic
per IMSI. Namely you want to know for all
active network users, what are the protocols
in use (e.g. HTTP, email, Whatspp, Skype)

55

Advanced GTP Monitoring [2/3]
• Using a specified command line option (—imsi-
aggregation) it is possible to tell nProbe that when
a flow expires, it must increment in redis for the
<5 mins epoch><IMSI> hash key, the number of
bytes of the subkey <application protocol>.!

• Redis guarantees that increment operations are
properly executed even if two simultaneous
clients want to increment the same key.!

• Periodically a simple (python) script can access
redis and read the aggregated values.

56

Advanced GTP Monitoring [3/3]
• Companion script!
!

!

• Example of traffic reports

57

$ crontab -l|grep ggrega!
*/5 * * * * /home/imsi/imsiAggregator.py --redis localhost  
--epoch -2 --outdir /export/working_dir/imsi!

#!
Timestamp IMSI Granularity Protocol Packets Bytes Flows Duration  
#!
1374938100 XXXXX2001106796 300 Unknown 3 298 2 2!
1374938100 XXXXX1100485374 300 HTTP 393 283553 13 114!
1374938100 XXXXX2001110729 300 SSL 49 14269 10 18!
1374938100 XXXXX2001338233 300 Skype 15 1411 1 7!
1374938100 XXXXX1101335045 300 DNS 2 385 1 1!
1374938100 XXXXX2001931139 300 Viber 17 1487 4 35

Using ntopng as Monitoring Console [1/2]

58

Libpcap PF_RING

Lua-based Scripting Engine

Web-Server

Incoming Packets
(Raw Traffic)

NetFlow/IPFIX, sFlow

n
nProbe

Redis

nDPI

Monitoring Engine

Web Browser

Data Export

Log ManagersWeb Apps

JSON Log FilesSyslog

Network Events
(e.g. Firewall)

JSON

Using ntopng as Monitoring Console [2/2]

59

Final Remarks
In this talk we have learnt:!
• Introduction to mobile traffic monitoring.!
• How to use Wireshark to analyse mobile traffic.!
• Versatile software traffic merging/balancing using
PF_RING.!

• Permanent GTP traffic monitoring using the open-
source nProbe application. 
Thanks to Wireshark and the open source ntop
tools presented, it is possible to effectively analyse
mobile traffic without using costly proprietary tools.

60

