Network and Security Monitoring in the IoT and Fog Computing Age

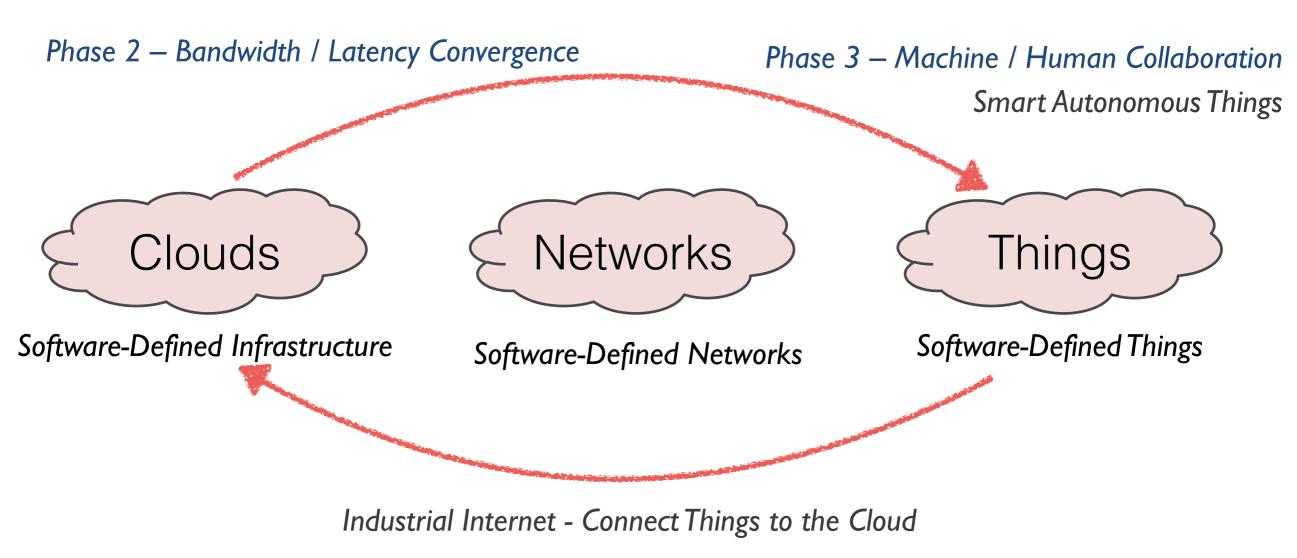
Luca Deri <deri@ntop.org> @lucaderi

About ntop

- ntop develops open source network traffic monitoring applications, part of major Linux/BSD software distributions.
- ntop (circa 1998) is the first app we released and it is a web-based network monitoring application.
- Today our products range from traffic monitoring, high-speed packet processing, deep-packet inspection (DPI), IDS/IPS acceleration, and DDoS Mitigation.
- See http://github.com/ntop/

It all Started with a sub-5\$ Computer...

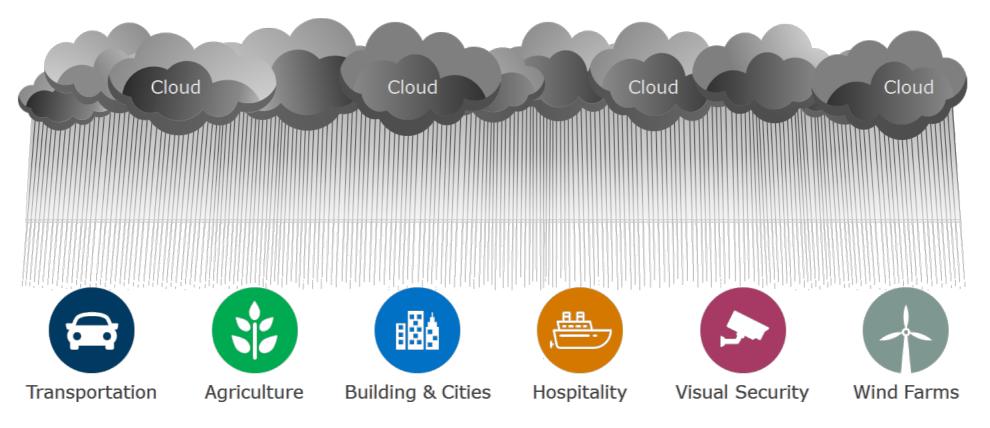
- Building low-cost devices able to run full fledged OSs (e.g. Linux) enabled computing to become really pervasive.
- No more excuses for not automating tasks, or rethinking existing processes in a more intelligent fashion.



- I Ghz, Single-core CPU
- 512MB RAM
- Mini HDMI and USB On-The-Go ports
- Micro USB power
- HAT-compatible 40-pin header
- Composite video and reset headers

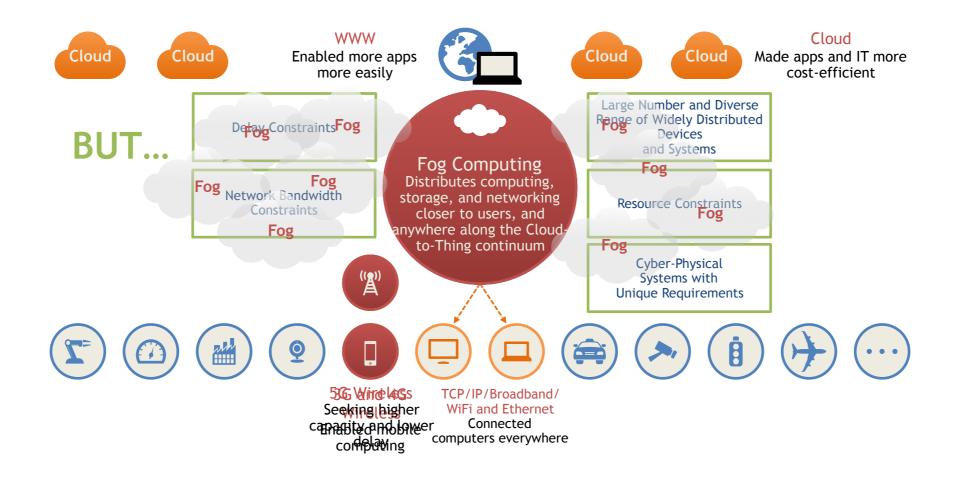
Raspberry PI zero (US\$ 5) Pine64 PADI IoT (US\$ 1.99)

IoT Transformation

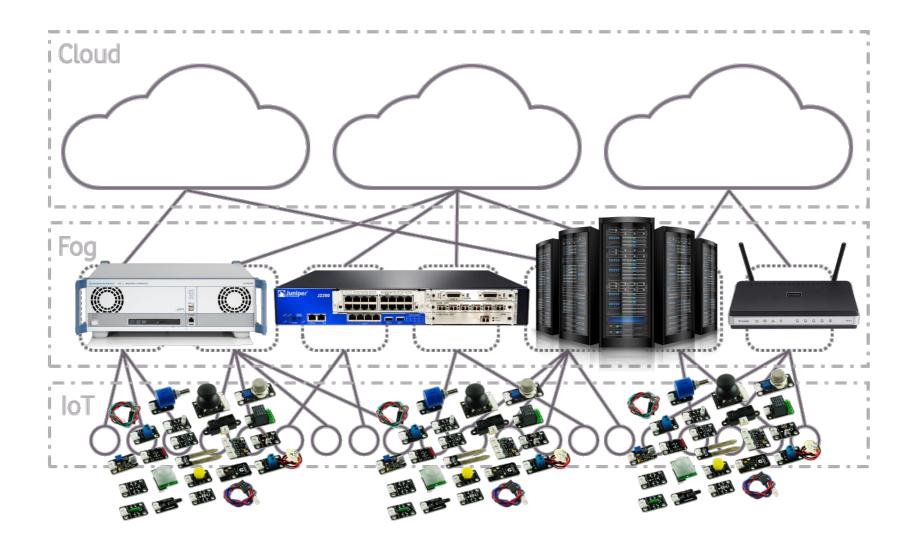


Phase I - OT/IT Convergence

However All This Cannot Scale...

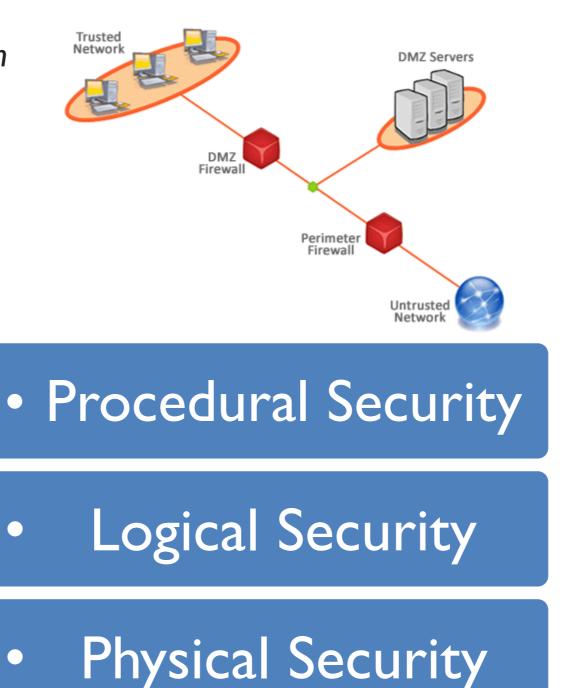

- The cloud alone cannot support the **IoT momentum**.
- There is a need for **filtering** and **processing** before the Cloud.

50 billion of connected devices by 2020 (Source Intel)



Towards Fog Computing

What is Fog Computing


FOG COMPUTING: a system-level horizontal architecture that distributes computing, storage, and networking closer to users, and anywhere along the Cloud-to-Thing continuum

A Broken Security Model [1/3]

"Every program and every privileged user of the system should operate using the least amount of privilege necessary to complete the job."

Jerome Saltzer

Principle east Privilege <u>Jenning's</u>

A Broken Security Model [2/3]

- The Low-voltage Environment:
 Wide-spread use of IoT devices.
 - Increasing interconnection between edge devices and corporate networks:

- an edge device has important topological privileges.
- Edge devices lack built-in security features: too simple, yet easy to attack or replace with "trojan" devices.
- Physical location renders networks vulnerable to external attack – even without Internet connection

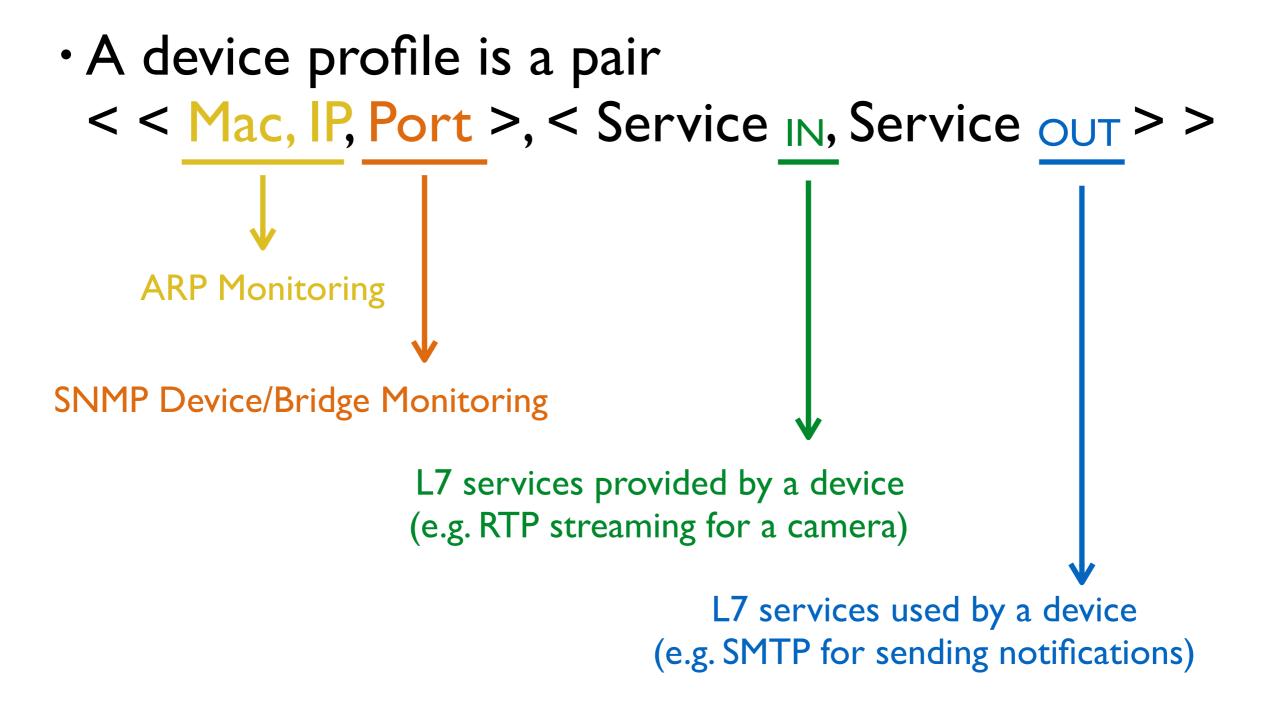
A Broken Security Model [3/3]

Unsecured low-voltage devices:

- Access control
 - Unauthorised opening of gates/doors, false attendance information.
- Video surveillance cameras
 - Manipulation of video camera streams, unauthorised viewing or disabling video edge-device elements.
- Building-management/Fire-alarm systems
 - False readings, disabling or blinding.
- Perimeter IP-based sensors
 - False readings, disabling or blinding.
- DDoS (Distributed Denial of Service) attacks, can disrupt network operations and thus break a complex system/factory.

Traditional Network Monitoring Is Becoming Outdated...

- Popular metrics such as bytes, packets, best-match routing are being revisited since users care about latency and application service time.
- Polling-based protocols (e.g. SNMP) are being replaced by push-oriented approaches (e.g. Cisco Telemetry).
- Binary/custom protocols (e.g. NetFlow/IPFIX) are being replaced by (less efficient yet more flexible/ open) JSON-based data sources so that data can be shared across components.



Basically We Need to Monitor...

- Dynamic network topologies and moving components.
- Identify IoT devices and threat them differently from "generic" computers (e.g. laptops or tablets)
- Tag network traffic with application protocol and monitor it continuously overtime looking at specialised metrics (e.g. HTTP return code) in addition to generic ones (e.g. jitter and bandwidth).
- As IoT devices are not installed in "controlled environments" (e.g. a rack on a datacenter vs on a corridor) physical security needs also to be monitored.

IoT Monitoring: Device Profile

IoT Monitoring: Traffic Profile

- A traffic profile is a pair
 - < < Device, Service, Latency, < Thpt _{UP}, Thpt _{DOWN} >, Protocol Metadata > >
- Device: subject of the communication.
- Service: Layer 7 (DPI) protocol identification.
- Latency: service time (slow response is a problem for devices such as burglar alarms).
- Throughput: create baseline (e.g. low throughput for a camera is an indication of a problem/attack).
- Metadata: used to pinpoint a problem (e.g. error reported).

Monitoring IoT (Security) [1/2]

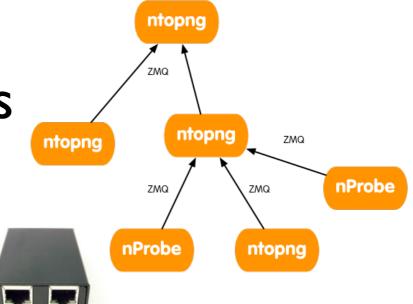
- Learning
 - Identify network elements (discovery), assign them a role (e.g. a printer).
- Profiling
 - Bind a device to a profile (e.g. a printer cannot Skype or share files using BitTorrent) and enforce it via alarms or traffic policy enforcement.
- Continuous Monitoring
 - Physical constraints (e.g. MAC/IP binding and switch port location), traffic constraints (e.g. a new protocol serviced by a device or throughput above/under its historical baseline can be an indication of a problem).

Monitoring IoT (Security) [2/2]

- In IoT monitoring traffic patters are rather static and thus once a model is created it must be observed regularly overtime, if not alert.
- Triggers notifications if devices fail due to electrical, software, mechanical or other faults: active monitoring/ polling is compulsory (passive is not enough).

• Threats


- External: monitor/detect breaches in the low-voltage network.
- Internal: monitor/detect network threats through unauthorised use (e.g. HTTP access to a device from a client that never did that before).

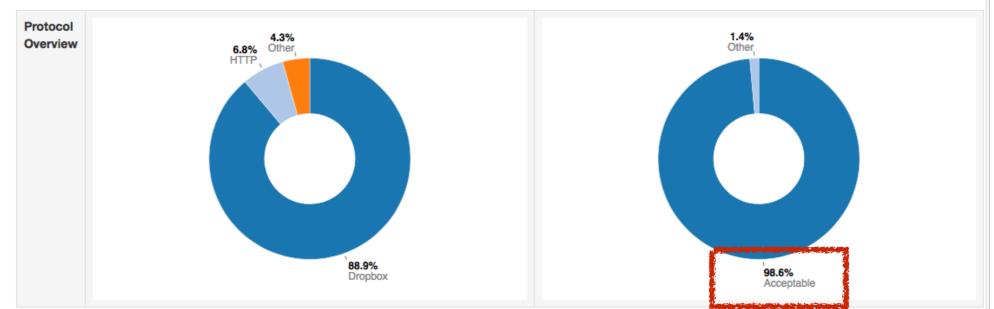


Solution Overview [1/3]

 Software-only, low-cost sensors that can be embedded in devices or deployed at the network edge, to create a collaborative monitoring infrastructure.

Tag devices, traffic, and users.

Solution Overview [2/3]


All Layer 2 Devices

a in fir	ARP	Stats
1 Carlos Carlos		

							10 - Filte	er MACs- Mar	ufacturer+		
MAC Address	Manufacturer	turer		Hosts ARP Sent❤ AR		Seen Since	Breakdown	Throughput	Traffic		
80:2A:A8:8D:69:2C	Ubiquiti Network	s Inc.	269	38	8	4 min, 32 sec	Sent Ro	9.1 Kbit	4.36 MB		
C4:2C:03:06:49:FE 厳	Apple, Inc.	ble, Inc.		10	8	4 min, 32 sec	Se Rovd	8.75 Kbit	4.37 MB		
CC:2D:8C:F6:C7:39	LG ELECTRONICS INC		1	5	2	4 min, 30 sec	Sent R 95.88 bps		14.62 KB		
54:4E:90:BA:EC:84 💣	Apple, Inc.	Apple, Inc.		5	0	2 min, 16 sec	Sent	361.17 bps	10.22 KB		
AC:87:A3:16:3E:30 🗯	Apple, Inc.	Apple, Inc.		0	0	4 min, 6 sec	Sent	0 bps	2.61 KB		
80:2A:A8:8D:2B:EE	Ubiquiti Networks Inc.		1	0	0	3 min, 30 sec	Sent	0 bps	228 B		
26:A4:3C:FF:4C:D7	n/a		0	0	0	2 min, 24 sec	Sent	0 bps	468 B		
28:57:BE:E3:D7:CF	Hangzhou Hikvision Digital Technology Co.,Ltd.		1	0	0	4 min, 31 sec	Sent	0 bps	13.6 KB		
24:A4:3C:FE:4C:D7	Ubiquiti Network	s Inc.	1	0	0	2 min, 22 sec	Sent	0 bps	1.45 KB		
Showing 1 to 9 of 9 rows	Hosts M	lonitoring						Physic	al Loc	ati	
ac: 80:2A:A8:8D:69:2C	÷		Device Port								
2 Address 80:2A:A8:8D:69:2C (Ubiquiti_8D:69:2C) [Sh				80:2A:A8:8D:69:2C	¢ S	ave					
t / Last Seen 02/04/2017 19:28:54 [4 min, 35 sec ago]				2/04/2017 19:33:26	[3 sec ago]		600 ge-0/1/0 tru				
t vs Received Traffic Breakdown			Sent			Rcvd		324 ge-0/1/0 trun			
fic Sent / Received		5,111 Pkts / 3.71 MB	4,558 Pkts / 666.24 KB								
ess Resolution Protocol		ARP Requests	ARP Replies					572 ge-0/			
		38 Sent / 0 Received	C) Sent / 8 Received							

Solution Overview [3/3]

Baselining

Alerting

Interface: eth0	1	Packets	Protocols		<u>_</u>	▲	È	٥		SNMP	÷
General Settings	•	Every Minute	Every	5 Minut	es	Hourl	y i	Daily			
Interface Alerts		🗹 🛕 Trigge	er alerts for Ir	nterface	eth0						
Rearm minutes		1 The rearm is t		Save between o	J	generation	and the	potentia	l generat	ion of the ne	xt alert of the same kind.

Final Remarks

- IoT and Fog computing create new monitoring challenges and require an *integrated monitoring* approach: element + periodic active scans + permanent passive traffic monitoring.
- Monitoring hundred/thousand devices require scalability and intelligence in the monitoring platform (analytics and big data is not enough, platform must be reactive, distributed, multitenant).
- Bytes+Packet-based monitoring must be complemented with specialised metrics, DPI, realtime telemetry monitoring, flexible (on-the-go) alerting.

Credits: Antonio Cisternino, Stefano Forti, Ohad Kleinman.

