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Hardware Flow Offload
What is it? Why you should matter?
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The market is moving from 10 Gbit  to 
40/100 Gbit


• At 40 Gbit frame inter-arrival time is ~16 nsec


• At 100 Gbit frame inter-arrival time is ~6 nsec

Good News: Network Speed
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• In the past 15/20 years nothing really 
happened in networking hardware 
beside speed bump:


• People talk about application 
protocols and metrics, NIC 
manufacturers about packet headers.


• NICs are mostly stateless and the 
most they can do is to filter packets at 
header level.

Bad News: Nothing New Beside Speed
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• Most network monitoring applications are 
based on the concept of connection 
(a.k.a. flow): a set of packets with the 
same 5-tuple.


• Firewalls, IPS/IDS, monitoring tools all 
work the same way:


• Decode the packet header and hash it.


• Find the hash bucket an update it.


• Perform an action (e.g. compute a flow).

Monitoring and Policy Enforcement
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• In the past years we demonstrated that it’s 
possible to generate NetFlow in software at 
100Gbit


• Optimising the software to scale on multi-
core processors


• Leveraging on FPGA adapters for 
accelerating packet capture


•We created a new lightweight network probe 
named nProbe Cento

Flow Monitoring at 40/100G

01/Dec/2015 16:00:25 [cento.cpp:513] Actual stats: 132'125'746 pps/0 drops
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• In order to accelerate flow processing advanced 
hardware NICs provide metadata that include <5 
tuple, header hash>.


• Unfortunately the hash is often computed sub-
optimally and thus it won’t help much with collisions.


• Software application are responsible for doing all the 
rest (i.e. everything past packet decoding) that is still 
a lot.


• Question: can we offload some more tasks to 
hardware ? Could we leverage on hardware to keep 
flow state? 

Flows and Hardware



Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017 

X

• Two years ago we have been asked by a network 
manufacturer company (Accolade Technology) to 
tell them what to implement in hardware to 
improve software applications, and they will do.


• ntop answer was to make firewalls,IDS/IPSs, 
monitoring faster by


• Keeping flow state in hardware.


• Periodically report flow information to software.


• Execute actions based on flow state.


• High capacity (no toy implementations).

Hardware as a White Canvas



Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017 

X

• ntop maintains an open source library 
named nDPI: it would be nice to make if 
faster.


• Deep Packet Inspection (DPI) requires to 
scan traffic data at line-rate


• Content scanning is CPU intensive and 
presents significant challenges to network 
analysis applications


• Overwhelmed by the traffic rates of 40/100G 
networks, it’s more likely to loose traffic.

What about DPI?
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• Offloading is not flexible


• Hardware is not as flexible as software


• Application protocols change every day


• High development and manufacturing 
costs


• Hardware is designed for mostly static 
patterns, software is more dynamic and 
flexible.

What about DPI in Hw?



Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017 

X

• FPGA adapters can be programmed to:


• Keep flow state


• Do basic flow classification and 
provide informations like hash, 
packets, bytes, first/last packet 
timestamp, tcp flags


• Software can be used for those 
activities that the FPGA cannot carry on 
(e.g. DPI and flow export)

A Hybrid Solution
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• Software DPI on the initial flow packets 
until the L7 protocol is detected.


• Hardware can be instructed to drop/
bypass/prioritise flows based on the DPI 
decision. All in hardware.

Hardware-assisted DPI

SYN-ACK

SYN ACK Data

Data Data Data Data Data Data Data

Data DataData

YouTube!

Sw Content Scanning Hw Flow Classification
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• NetFlow and flow-based monitoring


• Selective Packet-to-Disk: shunting.


• Flow-based filtering: DPI filtering or 
initial flow bytes (e.g HTTP header).


• Answer: we can accelerate them all 
using hardware flow state + actions.

What About…
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• Available with  PF_RING 7.0 currently supporting 
Accolade ANIC-Ku Series FPGA


• This work was triggered by Accolade but the PF_RING 
API is generic and we hope that other NIC 
manufacturers will implement something similar.


• The concept of “smartNIC” and p4.org include stateful 
elements that we would like to support in PF_RING 
when they will become available.

Flow Offload Support [1/3]

Stateful

Elements

http://p4.org
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• Raw packets with unique Flow ID tag (no 
hashing with collisions as NICs usually do)


• Periodic flow messages (software configurable)


• Flow Creation


• Periodic Flow Updates (with counters)


• Flow Deletion (inactivity)


• Ability to set (from software) the flow verdict on 
hardware so that future flows will stick to the 
decision made (drop/pass/shunt).

Flow Offload Support [2/3]
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Application 
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•Benchmarked at 4 x 10GE full 
 bandwidth with 128B sized packets 


•Adapters Flow Capacity:


• 10/40 Gbit: 6 million entries


• 100 Gbit: 32 million entries

Flow Offload Support [3/3]
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• Cento receives both raw packets and 
periodic flow stats updates


• As soon a L7 protocol has been 
detected by nDPI, Cento injects a flow 
filtering rule for shunting the flow (no 
more raw packets to be processed)

Cento with Flow Offload

nProbe Cento 
(Netflow)
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Hw-assisted DPI in Cento

SYN-ACK

SYN ACK Data

Data Data Data Data Data Data Data

Data DataDataYouTube!

Software Raw Data Processing

Hardware Processing (Offload)

Flow Filter

Periodic 
Flow Stats

Periodic 
Flow Stats
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• Test with real-life traffic, 5 Mpps, 500 
flows on Intel E3 (single core)

Cento with Flow Offload - Performance [1/2]
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•Test with UDP traffic, 13 Mpps, 500K 
flows on Intel E3 (single core)

Cento with Flow Offload - Performance [2/2]
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Flow Update

ZZZzzz… (Hw is Working)
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• Full raw traffic is recorded in 
n2disk


• Periodic flow stats are 
delivered to Cento


• Hw-assisted DPI with flow 
shunting by using markers

Netflow & Packet-to-Disk [1/2]
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• Cento can instruct the card to:


•mark flows for hw-assisted DPI


• fully discard flow packets to 
save disk space in n2disk (e.g. 
do not record raw traffic for 
video streaming) leveraging on 
L7 protocol detection.

Netflow & Packet-to-Disk [2/2]
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• pfflow: tiny application dumping 
Accolade flows to disk in PCAP format

pfflow: Flow To Disk [1/3]

Flow 
Classifier

Flow 
Record

pfflow PCAP with 
Flow Records
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pfflow: Flow To Disk [2/3]
void processBuffer(const struct pfring_pkthdr *h, 
                   const u_char *p, const u_char *user_bytes) { 
  if (h->extended_hdr.flags & PKT_FLAGS_FLOW_OFFLOAD_UPDATE) { 
    processFlow((generic_flow_update *) p); 
    if (dumper != NULL) 

flowDump((struct pcap_pkthdr *) h, 
     (generic_flow_update *) p); 

  } else { 
    processPacket(p, h->len, h->extended_hdr.pkt_hash); 
  } 
} 

int main(int argc, char* argv[]) { 
  pfring *pd = pfring_open("anic0", 1500 /* snaplen */,  

                PF_RING_FLOW_OFFLOAD); 
  pfring_set_socket_mode(pd, recv_only_mode); 
  pfring_loop(pd, processBuffer, (u_char*)NULL, wait_for_packet); 
  pfring_close(pd); 
} 
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pfflow: Flow To Disk [3/3]
void processFlow(generic_flow_update *flow) { 
  char buf1[30], buf2[30]; 
  char *ip1, *ip2; 

  if (flow->ip_version == 4){ 
    ip1 = _intoa(flow->src_ip.v4, buf1, sizeof(buf1)); 
    ip2 = _intoa(flow->dst_ip.v4, buf2, sizeof(buf2)); 
  } else { 
    ip1 = (char *) inet_ntop(AF_INET6, &flow->src_ip.v6.s6_addr, buf1, sizeof(buf1)); 
    ip2 = (char *) inet_ntop(AF_INET6, &flow->dst_ip.v6.s6_addr, buf2, sizeof(buf2)); 
  } 

  if (!quiet) { 
    printf("Flow Update: flowID = %u " 
           "srcIp = %s dstIp = %s srcPort = %u dstPort = %u protocol = %u tcpFlags = 0x%02X " 
           "fwd: Packets = %u Bytes = %u FirstTime = %u.%u LastTime = %u.%u " 
           "rev: Packets = %u Bytes = %u FirstTime = %u.%u LastTime = %u.%u\n", 
           flow->flow_id, ip1, ip2, flow->src_port, flow->dst_port, flow->l4_protocol, 
           flow->tcp_flags, 
           flow->fwd_packets, flow->fwd_bytes, flow->fwd_ts_first.tv_sec, 
           flow->fwd_ts_first.tv_nsec, flow->fwd_ts_last.tv_sec, flow->fwd_ts_last.tv_nsec, 
           flow->rev_packets, flow->rev_bytes, flow->rev_ts_first.tv_sec, 
           flow->rev_ts_first.tv_nsec, flow->rev_ts_last.tv_sec, flow->rev_ts_last.tv_nsec); 
  } 
} 
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PFRingFlow: Wireshark Flow Dissector [1/3]

PCAP with 
Flow Records

Accolade Flow 
Dissector Plugin
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PFRingFlow: Wireshark Flow Dissector [2/3]
-- create myproto protocol and its fields                                                                                                                                                               
p_pfringflow = Proto("PFRingFlow", "PF_RING Flow Offload Record") 

local f_flow_id = ProtoField.uint32("pfringflow.flow_id", "Flow Id", base.DEC) 
local f_ip_version = ProtoField.uint8("pfringflow.ip_version", "IP Version", base.DEC) 
local f_l4_protocol = ProtoField.uint8("pfringflow.l4_protocol", "L4 Protocol", base.DEC) 
local f_tos = ProtoField.uint8("pfringflow.tos", "TOS", base.DEC) 
local f_tcp_flags = ProtoField.uint8("pfringflow.tcp_flags", "TCP Flags", base.DEC) 
local f_src_ipv4 = ProtoField.ipv4("pfringflow.src_ipv4", "IPv4 Src Address") 
local f_src_ipv6 = ProtoField.ipv6("pfringflow.src_ipv6", "IPv6 Src Address") 
local f_dst_ipv4 = ProtoField.ipv4("pfringflow.dst_ipv4", "IPv4 Dst Address") 
local f_dst_ipv6 = ProtoField.ipv6("pfringflow.dst_ipv6", "IPv6 Dst Address") 
local f_src_port = ProtoField.uint16("pfringflow.src_port", "Source Port", base.DEC) 
local f_dst_port = ProtoField.uint16("pfringflow.dst_port", "Destination Port", base.DEC) 
local f_fwd_packets = ProtoField.uint32("pfringflow.fwd_packets", "Forward Packets", base.DEC) 
local f_fwd_bytes = ProtoField.uint32("pfringflow.fwd_bytes", "Forward Bytes", base.DEC) 
local f_rev_packets = ProtoField.uint32("pfringflow.rev_packets", "Reverse Packets", base.DEC) 
local f_rev_bytes = ProtoField.uint32("pfringflow.rev_bytes", "Reverse Bytes", base.DEC) 
  -- Timestamp format: (sec << 32) | (nsec)                                                                                                                                                             
local f_fwd_ts_first = ProtoField.string("pfringflow.fwd_ts_first", "Forward First Seen") 
local f_fwd_ts_last = ProtoField.string("pfringflow.fwd_ts_last", "Forward Last Seen") 
local f_rev_ts_first = ProtoField.string("pfringflow.rev_ts_first", "Reverse First Seen") 
local f_rev_ts_last = ProtoField.string("pfringflow.rev_ts_last", "Reverse Last Seen") 

p_pfringflow.fields = { f_flow_id, f_ip_version, f_l4_protocol, f_tos, f_tcp_flags, 
                      f_src_ipv4, f_src_ipv6, f_dst_ipv4, f_dst_ipv6, 
                      f_src_port, f_dst_port, f_fwd_packets, f_fwd_bytes, f_rev_packets, f_rev_bytes, 
                      f_fwd_ts_first, f_fwd_ts_last, f_rev_ts_first, f_rev_ts_last 
} 
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PFRingFlow: Wireshark Flow Dissector [3/3]
function p_pfringflow.dissector (buf, pkt, root) 
   local sec, nsec, sec_offset 
  
  if buf:len() == 0 then return end 
   pkt.cols.protocol = p_pfringflow.name 

   -- create subtree for pfringflow                                                                                                                                                                     
   subtree = root:add(p_pfringflow, buf(0)) 
   offset = 0 

   -- add protocol fields to subtree                                                                                                                                                                    
   subtree:add_le(f_flow_id, buf(offset, 4)) 
   offset = offset + 4 

  …… 
   sec_offset = offset 
   sec = buf(offset, 4):le_uint() 
   offset = offset + 4 

   nsec = buf(offset, 4):le_uint() 
   offset = offset + 4 

   subtree:add(f_rev_ts_last, buf(sec_offset, 8), sec.."."..nsec) 

end 

-- Initialization routine                                                                                                                                                                               
function p_pfringflow.init() 
end 

-- 0x0F00 = 61440                                                                                                                                                                                       
local eth_dissector_table = DissectorTable.get("ethertype") 
dissector = eth_dissector_table:get_dissector(61440) 

                                                                                                                                                    
eth_dissector_table:add(61440, p_pfringflow) 
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• https://github.com/ntop/PF_RING


• https://github.com/ntop/PF_RING/
blob/dev/userland/examples/pfflow.c


• https://github.com/ntop/PF_RING/
tree/dev/userland/wireshark/plugins

Code Availability

https://github.com/ntop/PF_RING
https://github.com/ntop/PF_RING/blob/dev/userland/examples/pfflow.c
https://github.com/ntop/PF_RING/blob/dev/userland/examples/pfflow.c
https://github.com/ntop/PF_RING/tree/dev/userland/wireshark/plugins
https://github.com/ntop/PF_RING/tree/dev/userland/wireshark/plugins

