
Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

Hardware Flow Offload
What is it? Why you should matter?

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

The market is moving from 10 Gbit to
40/100 Gbit

• At 40 Gbit frame inter-arrival time is ~16 nsec

• At 100 Gbit frame inter-arrival time is ~6 nsec

Good News: Network Speed

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• In the past 15/20 years nothing really
happened in networking hardware
beside speed bump:

• People talk about application
protocols and metrics, NIC
manufacturers about packet headers.

• NICs are mostly stateless and the
most they can do is to filter packets at
header level.

Bad News: Nothing New Beside Speed

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Most network monitoring applications are
based on the concept of connection
(a.k.a. flow): a set of packets with the
same 5-tuple.

• Firewalls, IPS/IDS, monitoring tools all
work the same way:

• Decode the packet header and hash it.

• Find the hash bucket an update it.

• Perform an action (e.g. compute a flow).

Monitoring and Policy Enforcement

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• In the past years we demonstrated that it’s
possible to generate NetFlow in software at
100Gbit

• Optimising the software to scale on multi-
core processors

• Leveraging on FPGA adapters for
accelerating packet capture

•We created a new lightweight network probe
named nProbe Cento

Flow Monitoring at 40/100G

01/Dec/2015 16:00:25 [cento.cpp:513] Actual stats: 132'125'746 pps/0 drops

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• In order to accelerate flow processing advanced
hardware NICs provide metadata that include <5
tuple, header hash>.

• Unfortunately the hash is often computed sub-
optimally and thus it won’t help much with collisions.

• Software application are responsible for doing all the
rest (i.e. everything past packet decoding) that is still
a lot.

• Question: can we offload some more tasks to
hardware ? Could we leverage on hardware to keep
flow state?

Flows and Hardware

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Two years ago we have been asked by a network
manufacturer company (Accolade Technology) to
tell them what to implement in hardware to
improve software applications, and they will do.

• ntop answer was to make firewalls,IDS/IPSs,
monitoring faster by

• Keeping flow state in hardware.

• Periodically report flow information to software.

• Execute actions based on flow state.

• High capacity (no toy implementations).

Hardware as a White Canvas

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• ntop maintains an open source library
named nDPI: it would be nice to make if
faster.

• Deep Packet Inspection (DPI) requires to
scan traffic data at line-rate

• Content scanning is CPU intensive and
presents significant challenges to network
analysis applications

• Overwhelmed by the traffic rates of 40/100G
networks, it’s more likely to loose traffic.

What about DPI?

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Offloading is not flexible

• Hardware is not as flexible as software

• Application protocols change every day

• High development and manufacturing
costs

• Hardware is designed for mostly static
patterns, software is more dynamic and
flexible.

What about DPI in Hw?

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• FPGA adapters can be programmed to:

• Keep flow state

• Do basic flow classification and
provide informations like hash,
packets, bytes, first/last packet
timestamp, tcp flags

• Software can be used for those
activities that the FPGA cannot carry on
(e.g. DPI and flow export)

A Hybrid Solution

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Software DPI on the initial flow packets
until the L7 protocol is detected.

• Hardware can be instructed to drop/
bypass/prioritise flows based on the DPI
decision. All in hardware.

Hardware-assisted DPI

SYN-ACK

SYN ACK Data

Data Data Data Data Data Data Data

Data DataData

YouTube!

Sw Content Scanning Hw Flow Classification

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• NetFlow and flow-based monitoring

• Selective Packet-to-Disk: shunting.

• Flow-based filtering: DPI filtering or
initial flow bytes (e.g HTTP header).

• Answer: we can accelerate them all
using hardware flow state + actions.

What About…

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Available with PF_RING 7.0 currently supporting
Accolade ANIC-Ku Series FPGA

• This work was triggered by Accolade but the PF_RING
API is generic and we hope that other NIC
manufacturers will implement something similar.

• The concept of “smartNIC” and p4.org include stateful
elements that we would like to support in PF_RING
when they will become available.

Flow Offload Support [1/3]

Stateful

Elements

http://p4.org

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Raw packets with unique Flow ID tag (no
hashing with collisions as NICs usually do)

• Periodic flow messages (software configurable)

• Flow Creation

• Periodic Flow Updates (with counters)

• Flow Deletion (inactivity)

• Ability to set (from software) the flow verdict on
hardware so that future flows will stick to the
decision made (drop/pass/shunt).

Flow Offload Support [2/3]

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

Application

Time
Stamp

Packet
Merge

Packet
Parser

Flow
Classifi

er

Flow
Table

PF_RING
Raw

Packet
Flow
Stats

•Benchmarked at 4 x 10GE full 
 bandwidth with 128B sized packets

•Adapters Flow Capacity:

• 10/40 Gbit: 6 million entries

• 100 Gbit: 32 million entries

Flow Offload Support [3/3]

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Cento receives both raw packets and
periodic flow stats updates

• As soon a L7 protocol has been
detected by nDPI, Cento injects a flow
filtering rule for shunting the flow (no
more raw packets to be processed)

Cento with Flow Offload

nProbe Cento
(Netflow)

Time
Stamp

Buffer
Memor

Packet
Merge

Packet
Parser

Packet
Filter

Flow
Classifie

Flow
Table

Raw
PacketFlow

Stats
Flow
Filter

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

Hw-assisted DPI in Cento

SYN-ACK

SYN ACK Data

Data Data Data Data Data Data Data

Data DataDataYouTube!

Software Raw Data Processing

Hardware Processing (Offload)

Flow Filter

Periodic
Flow Stats

Periodic
Flow Stats

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Test with real-life traffic, 5 Mpps, 500
flows on Intel E3 (single core)

Cento with Flow Offload - Performance [1/2]
C

or
e

Lo
ad

 %

0

25

50

75

100

C
or

e
Lo

ad
 %

0

25

50

75

100
Standard Processing With Flow Offload

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

•Test with UDP traffic, 13 Mpps, 500K
flows on Intel E3 (single core)

Cento with Flow Offload - Performance [2/2]
C

or
e

Lo
ad

 %

0

25

50

75

100

C
or

e
Lo

ad
 %

0

25

50

75

100
Standard Processing With Flow Offload

Flow Update

ZZZzzz… (Hw is Working)

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Full raw traffic is recorded in
n2disk

• Periodic flow stats are
delivered to Cento

• Hw-assisted DPI with flow
shunting by using markers

Netflow & Packet-to-Disk [1/2]

n2disk
(Traffic Recording)

Flow
Classifier

Raw
Packet Flow

Stats

nProbe Cento
(Netflow)

Raw
Packet Flow

Stats

Feedback Queue
Flow
Filter

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• Cento can instruct the card to:

•mark flows for hw-assisted DPI

• fully discard flow packets to
save disk space in n2disk (e.g.
do not record raw traffic for
video streaming) leveraging on
L7 protocol detection.

Netflow & Packet-to-Disk [2/2]

n2disk
(Traffic Recording)

Flow
Classifier

Raw
Packet Flow

Stats

nProbe Cento
(Netflow)

Raw
Packet Flow

Stats

Feedback Queue
Flow
Filter

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• pfflow: tiny application dumping
Accolade flows to disk in PCAP format

pfflow: Flow To Disk [1/3]

Flow
Classifier

Flow
Record

pfflow PCAP with
Flow Records

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

pfflow: Flow To Disk [2/3]
void processBuffer(const struct pfring_pkthdr *h,
 const u_char *p, const u_char *user_bytes) {
 if (h->extended_hdr.flags & PKT_FLAGS_FLOW_OFFLOAD_UPDATE) {
 processFlow((generic_flow_update *) p);
 if (dumper != NULL)

flowDump((struct pcap_pkthdr *) h,
 (generic_flow_update *) p);

 } else {
 processPacket(p, h->len, h->extended_hdr.pkt_hash);
 }
}

int main(int argc, char* argv[]) {
 pfring *pd = pfring_open("anic0", 1500 /* snaplen */,

 PF_RING_FLOW_OFFLOAD);
 pfring_set_socket_mode(pd, recv_only_mode);
 pfring_loop(pd, processBuffer, (u_char*)NULL, wait_for_packet);
 pfring_close(pd);
}

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

pfflow: Flow To Disk [3/3]
void processFlow(generic_flow_update *flow) {
 char buf1[30], buf2[30];
 char *ip1, *ip2;

 if (flow->ip_version == 4){
 ip1 = _intoa(flow->src_ip.v4, buf1, sizeof(buf1));
 ip2 = _intoa(flow->dst_ip.v4, buf2, sizeof(buf2));
 } else {
 ip1 = (char *) inet_ntop(AF_INET6, &flow->src_ip.v6.s6_addr, buf1, sizeof(buf1));
 ip2 = (char *) inet_ntop(AF_INET6, &flow->dst_ip.v6.s6_addr, buf2, sizeof(buf2));
 }

 if (!quiet) {
 printf("Flow Update: flowID = %u "
 "srcIp = %s dstIp = %s srcPort = %u dstPort = %u protocol = %u tcpFlags = 0x%02X "
 "fwd: Packets = %u Bytes = %u FirstTime = %u.%u LastTime = %u.%u "
 "rev: Packets = %u Bytes = %u FirstTime = %u.%u LastTime = %u.%u\n",
 flow->flow_id, ip1, ip2, flow->src_port, flow->dst_port, flow->l4_protocol,
 flow->tcp_flags,
 flow->fwd_packets, flow->fwd_bytes, flow->fwd_ts_first.tv_sec,
 flow->fwd_ts_first.tv_nsec, flow->fwd_ts_last.tv_sec, flow->fwd_ts_last.tv_nsec,
 flow->rev_packets, flow->rev_bytes, flow->rev_ts_first.tv_sec,
 flow->rev_ts_first.tv_nsec, flow->rev_ts_last.tv_sec, flow->rev_ts_last.tv_nsec);
 }
}

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

PFRingFlow: Wireshark Flow Dissector [1/3]

PCAP with
Flow Records

Accolade Flow
Dissector Plugin

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

PFRingFlow: Wireshark Flow Dissector [2/3]
-- create myproto protocol and its fields
p_pfringflow = Proto("PFRingFlow", "PF_RING Flow Offload Record")

local f_flow_id = ProtoField.uint32("pfringflow.flow_id", "Flow Id", base.DEC)
local f_ip_version = ProtoField.uint8("pfringflow.ip_version", "IP Version", base.DEC)
local f_l4_protocol = ProtoField.uint8("pfringflow.l4_protocol", "L4 Protocol", base.DEC)
local f_tos = ProtoField.uint8("pfringflow.tos", "TOS", base.DEC)
local f_tcp_flags = ProtoField.uint8("pfringflow.tcp_flags", "TCP Flags", base.DEC)
local f_src_ipv4 = ProtoField.ipv4("pfringflow.src_ipv4", "IPv4 Src Address")
local f_src_ipv6 = ProtoField.ipv6("pfringflow.src_ipv6", "IPv6 Src Address")
local f_dst_ipv4 = ProtoField.ipv4("pfringflow.dst_ipv4", "IPv4 Dst Address")
local f_dst_ipv6 = ProtoField.ipv6("pfringflow.dst_ipv6", "IPv6 Dst Address")
local f_src_port = ProtoField.uint16("pfringflow.src_port", "Source Port", base.DEC)
local f_dst_port = ProtoField.uint16("pfringflow.dst_port", "Destination Port", base.DEC)
local f_fwd_packets = ProtoField.uint32("pfringflow.fwd_packets", "Forward Packets", base.DEC)
local f_fwd_bytes = ProtoField.uint32("pfringflow.fwd_bytes", "Forward Bytes", base.DEC)
local f_rev_packets = ProtoField.uint32("pfringflow.rev_packets", "Reverse Packets", base.DEC)
local f_rev_bytes = ProtoField.uint32("pfringflow.rev_bytes", "Reverse Bytes", base.DEC)
 -- Timestamp format: (sec << 32) | (nsec)
local f_fwd_ts_first = ProtoField.string("pfringflow.fwd_ts_first", "Forward First Seen")
local f_fwd_ts_last = ProtoField.string("pfringflow.fwd_ts_last", "Forward Last Seen")
local f_rev_ts_first = ProtoField.string("pfringflow.rev_ts_first", "Reverse First Seen")
local f_rev_ts_last = ProtoField.string("pfringflow.rev_ts_last", "Reverse Last Seen")

p_pfringflow.fields = { f_flow_id, f_ip_version, f_l4_protocol, f_tos, f_tcp_flags,
 f_src_ipv4, f_src_ipv6, f_dst_ipv4, f_dst_ipv6,
 f_src_port, f_dst_port, f_fwd_packets, f_fwd_bytes, f_rev_packets, f_rev_bytes,
 f_fwd_ts_first, f_fwd_ts_last, f_rev_ts_first, f_rev_ts_last
}

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

PFRingFlow: Wireshark Flow Dissector [3/3]
function p_pfringflow.dissector (buf, pkt, root)
 local sec, nsec, sec_offset

 if buf:len() == 0 then return end
 pkt.cols.protocol = p_pfringflow.name

 -- create subtree for pfringflow
 subtree = root:add(p_pfringflow, buf(0))
 offset = 0

 -- add protocol fields to subtree
 subtree:add_le(f_flow_id, buf(offset, 4))
 offset = offset + 4

 ……
 sec_offset = offset
 sec = buf(offset, 4):le_uint()
 offset = offset + 4

 nsec = buf(offset, 4):le_uint()
 offset = offset + 4

 subtree:add(f_rev_ts_last, buf(sec_offset, 8), sec.."."..nsec)

end

-- Initialization routine
function p_pfringflow.init()
end

-- 0x0F00 = 61440
local eth_dissector_table = DissectorTable.get("ethertype")
dissector = eth_dissector_table:get_dissector(61440)

eth_dissector_table:add(61440, p_pfringflow)

Sharkfest EU 2017 • Estoril, Portugal • November 7th - 10th, 2017

X

• https://github.com/ntop/PF_RING

• https://github.com/ntop/PF_RING/
blob/dev/userland/examples/pfflow.c

• https://github.com/ntop/PF_RING/
tree/dev/userland/wireshark/plugins

Code Availability

https://github.com/ntop/PF_RING
https://github.com/ntop/PF_RING/blob/dev/userland/examples/pfflow.c
https://github.com/ntop/PF_RING/blob/dev/userland/examples/pfflow.c
https://github.com/ntop/PF_RING/tree/dev/userland/wireshark/plugins
https://github.com/ntop/PF_RING/tree/dev/userland/wireshark/plugins

