
nScrub
User’s Guide

nScrub v.1.3 May 2018

nScrub v.1.3 User’s Guide

Introduction 3
Main Features 5
Versions 8
Installation 9
License Setup 11
Engine Configuration 12
Performance and Tuning 16
Traffic Enforcement Configuration 21
Traffic Monitoring and Statistics 24
Appendix A - Command line tools 26
Appendix B - Utilities and Testing 29
Appendix C - Hugepages 30
Appendix D - EULA 32

 2

nScrub v.1.3 User’s Guide

Introduction

A DDoS (Distributed Denial of Service) attack is an attempt to make a service unavailable
by overwhelming it with malicious traffic from multiple distributed sources.

Common routers, firewalls and IPSs are not designed to handle high volume of packets
per second and are often the the first victim of the Denial of Service attacks. Specialised
solutions are needed to protect the infrastructure, solutions that can not only route or
bridge high packet rates but also able to filter and challenge malicious traffic.

Such dedicated solutions in the past where implemented by dedicated hardware with
specially designed ASICs or FPGAs capable of handling high speed filtering.

nScrub is a software-based DDoS mitigation tool based on PF_RING and Zero Copy able
to operate at 10 Gbps line rate (no matter the packet size) using commodity hardware
(e.g. Intel NICs and standard servers).

nScrub is easy to configure, even for beginners and companies that never faced with
DDoS until now. Affordable in terms of price, deployment, reporting. A looking glass to
see the status of the network while mitigating attacks.

nScrub not only performs as good as a hardware based solution but provide a flexibility
that makes it unique:

• Easy Deployment: nScrub can be implemented as bump in the wire (i.e. no BGP or
traffic tunnelling necessary to deploy nScrub).

• Low Cost: very low TCO (Total Cost of Ownership).
• Modularity: extensibility for the definition of additional algorithms for traffic mitigation.

They can be implemented through an API that allows developers to create their own
mitigation facilities to be used in addition to those part of nScrub.

 3

nScrub v.1.3 User’s Guide

• Rich Detection: precise mitigation based on algorithms that try to determine whether
the incoming traffic is real/legitimate.

• Auto-healing: automatic escalation during mitigation: when things get bad, the user
has the ability to enable auto-escalation to put in place a proper reaction to threats.

• Not hardware locking: nScrub can operate with multiple hardware vendors avoiding
vendor locking.

The main features include:

• Support for asymmetric (i.e. ability to mitigate only one traffic direction, from Internet
to the protected network) and symmetric (i.e. mitigate from Internet to the protected
network, but also forward the outbound traffic) mode. Asymmetric mode allows also
to deploy nScrub as a off-ramp solution (scrubbing center) by means of BGP re-
routing.

• Detection of real/legitimate traffic by means of techniques that try to detect if the
sender is real or not and the session is legitimate or not.

• Ability to monitor/visualise legitimate/good ingress traffic as well as discarded/bad
traffic, both sampled or not, forwarding traffic to egress interfaces to be sent to
monitoring machines or IDS (e.g. snort), or to be recorded and analysed at later
stage.

• Ability to configure mitigation profiles per destinations (i.e. the network to protect) so
that each host of the protected network can have a custom protection policy.

• Multi protocol application support including DNS, HTTP and HTTPS

 4

nScrub v.1.3 User’s Guide

Main Features
Traffic enforcement

• TCP sessions validation
• Dynamic whitelisting with expiration on successful session check
• User-defined whitelist/blacklist/graylist of source subnets with CIDR notation
• ACL-like accept/drop policies based on UDP/TCP port, ICMP type, etc.
• Other drop policies based on IP TTL values, UDP payload size, fragments, etc.
• DNS SLIP-like checks: force TCP, etc.
• Mitigation UDP-based amplification attacks.
• Signature-based filtering (offset and string)
• HTTP filtering, based on request items name/content.
• Traffic Throttling: packets below the threshold are forwarded, otherwise they are

discarded. This guarantee that unwanted traffic will have an egress rate capped to a
specific value. Ability to specify the rate based on protocol and source or
destination.

• Traffic checkers are implemented as plugins with a clean API, so that more checkers
for specific protocols can be created.

Multi-Tenancy
• Ingress traffic is split towards several virtual mitigators, based on the destination IP

address, this way it is possible to specify traffic enforcement policies per destination
subnet

• Each virtual mitigator is bound to traffic enforcement profiles: default, white, black,
gray. Each profile contains a traffic enforcement configuration (e.g. SYN
check=yes, ICMP Drop=No) and applies to source IPs according to the lists (white/
black/gray).

 5

nScrub v.1.3 User’s Guide

• Global or per-destination bypass mode
Traffic Visibility

• Statistics dump to RRD for keeping an history of traffic trends.
• Ability to send sampled/full good/bad/all traffic to external virtual devices (e.g. for

traffic analysis or dump).

Hw acceleration and Scalability
• Hardware bypass NIC support (Silicom): ensures that nScrub will have no impact in

the infrastructure in case of hardware failure.
• Load balancing across cores using hw RSS or custom sw distribution

UI
• REST API for reconfiguring the engine on-the-fly
• CLI tool with auto-completion

 6

nScrub v.1.3 User’s Guide

 7

nScrub v.1.3 User’s Guide

Versions
The nScrub software comes in two versions, 1G and 10G. Each version comes in various
flavours (S/M for 1G, L/XL/XXL for 10G) depending on speed and number of target
servers that nScrub can handle.

The 10G version includes support for multithreaded packet capture and processing, with
an internal architecture able to balance the load across multiple threads in a zero-copy
fashion. This version can handle rates above 10 Gigabit.

Please find all nScrub flavours in the table below.

S M L XL XXL

Speed 1 Gigabit 1 Gigabit 10 Gigabit 10 Gigabit 10 Gigabit

Servers Up to 10 Unlimited Up to 10 Up to 100 Unlimited

 8

nScrub v.1.3 User’s Guide

Installation
In order to run nscrub the following major steps are needed:

1. Install and configure PF_RING and ZC drivers (later in this chapter).
2. Install nScrub (later in this chapter) and configure it to run with the optimal setup

(Engine Configuration and Performance and Tuning chapters).
3. Configure nScrub to mitigate traffic (Traffic Enforcement Configuration chapter).

Prerequisites:
• PF_RING for packet capture acceleration
• redis-server for storing configuration and system state

Please note that installation packages are provided for some Linux distributions including
Ubuntu, Debian and CentOS at http://packages.ntop.org/. Please follow the steps on the
website for configuring the repository and install at least the pfring, pfring-drivers-zc-
dkms and nscrub.

PF_RING
After installing pfring and pfring-drivers-zc-dkms, it is possible to use the init script
under /etc/init.d/pf_ring to automate the kernel module and drivers loading as explained
in the PF_RING User’s Guide at http://www.ntop.org/guides/pf_ring/get_started/
packages_installation.html

For the impatient, this is an example of a minimal configuration for a dual-port ixgbe card
(replace ixgbe with your driver model) on a uniprocessor:

touch /etc/pf_ring/pf_ring.start
mkdir -p /etc/pf_ring/zc/ixgbe
touch /etc/pf_ring/zc/ixgbe/ixgbe.start
echo “RSS=0,0” > /etc/pf_ring/zc/ixgbe/ixgbe.conf
echo “node=0 hugepagenumber=1024” > /etc/pf_ring/hugepages.conf

Please note that RSS=0,0 will create as many interface queues as the number of cores,
however since most Intel cards support up to 16 RSS queues for load balancing, in case
of CPUs with many cores it’s a good practice to force it to 16 using RSS=16,16.

Please also note that the number of hugepages requires for memory allocation depends
on the number of interface queues (and auxiliary queues if any) and the MTU. For
instance if you configure 12 RSS queues with an MTU of 1500 bytes, you probably need
up to 2048 hugepages, if you configure 16 RSS queues a common configuration is 4096
hugepages.

In order to load pf_ring, if your system is using systemd please run:

systemctl start pf_ring

Otherwise please use the init.d script:

/etc/init.d/pf_ring start

 9

http://packages.ntop.org/
http://www.ntop.org/guides/pf_ring/get_started/packages_installation.html
http://www.ntop.org/guides/pf_ring/get_started/packages_installation.html

nScrub v.1.3 User’s Guide

nScrub
The nscrub installation is pretty straightforward, just install the nscrub package from the
repository, then move to the next chapters.  

 10

nScrub v.1.3 User’s Guide

License Setup
nScrub needs a license in order to operate permanently (i.e. not in demo mode). In order
to obtain a license, you need to go to the web shop and order it using the system ID and
nScrub version.

Identity version and system ID:

nscrub -V
nscrub 1.0 [SystemID: 1234567890]

Get a license and install it:

echo <LICENSE> > /etc/nscrub.license

You can now start your licensed nScrub copy. It is possible to check license status with:

nscrub --check-license

and maintenance expiration with:

nscrub --check-maintenance

Please note that in order to run nScrub on top of PF_RING ZC, you also need ZC licenses,
one for each interface you are going to use. In order to obtain ZC licenses, you need to
go to the web shop and order them using the MAC addresses as reported by:

ifconfig <interface>

the driver model as reported by:

ethtool -i <interface> | grep driver

and the PF_RING version as reported by:

 # zcount -h | grep PFRING_ZC

 11

nScrub v.1.3 User’s Guide

Engine Configuration
The engine can be configured using the REST API or the CLI tool nscrub-cli with auto-
completion support (note this is also using the REST API as backend).
In order to use the API over HTTPs you need to create a SSL certificate:

openssl req -new -x509 -sha1 -extensions v3_ca -nodes -days 365 -out cert.pem
cat privkey.pem cert.pem > /usr/share/nscrub/ssl/ssl-cert.pem
rm -f privkey.pem cert.em

In order to run nScrub using the init.d script, /etc/nscrub/nscrub.start should be created
and the configuration file should be placed under /etc/nscrub/nscrub.conf. Example:

touch /etc/nscrub/nscrub.start
cat /etc/nscrub/nscrub.conf
--wan-interface=zc:eth1
--lan-interface=zc:eth2
--log-path=/var/tmp/nscrub.log
--pid-path=/var/tmp/nscrub.pid
--daemon

If your system is using systemd, the application can be run with:
In order to load pf_ring, if you are using systemd please run:

systemctl start nscrub

Otherwise please use the init.d script:

/etc/init.d/nscrub start

The following options can be specified in the configuration file. For default values please
refer to the application help (--help|-h option).

Basic Settings
[--wan-interface|-i] <device> | First device name (internet)
[--lan-interface|-o] <device> | Second device name (local network)
[--asymmetric|-A] | Asymmetric routing (wan to lan
 | traffic only)
[--sw-distribution|-w] | Use SW Distribution + RSS TX Queues
[--active-wait|-a] | Active packet wait

Host Connectivity/Routing
[--connect-host|-X] | Let the host be reachable on the
 | wan/lan interfaces
[--routing|-x] | Act as a router (usually used with
 | BGP traffic diversion)

CPU Affinity
[--balancer-affinity|-r] <id>:<id> | Bind packet distribution threads to
 | core ids (-w only)
[--thread-affinity|-g] <id>[:<id>[..]] | Bind processing threads to core id
[--time-source-affinity|-T] <id> | Bind time-source thread to core id

 12

nScrub v.1.3 User’s Guide

Traffic Monitoring
[--aux-queues|-O] <num> | Enable <num> sets of auxiliary
 | egress queues for packet sampling
 | (traffic analysis/dumping)
[--event-script-dir|-Q] <dir> | Event scripts directory

Advanced Settings
[--cluster-id|-c] <id> | ZC cluster ID
[--ht-idle-timeout|-I] <usec> | Flow idle timeout
[--dyn-white-list-idle-timeout|-e] <usec> | Auto-whitelist idle timeout
[Default: 3600000000]
[--gre-decapsulation|-E] | Decapsulate GRE traffic
[--redis|-D] <host[:port][@db-id]> | Redis DB host[:port][@database id]

REST Server
[--http-address|-G] <address> | IP address for REST server socket
 | binding
[--http-port|-H] <port> | HTTP port for REST server
[--https-port|-s] <port> | HTTPs port for REST server
[--docs-root|-R] <dir> | Docs root directory

Logging
[--log-path|-l] <path> | Log file path
[--stats-log-path|-y] <path> | Stats log file path
[--debug-level|-t] <level> | Trace level

Service
[--daemon|-d] | Run as a daemon
[--pid-path|-p] <path> | PID file path
[--user] <sys user> | Run with the specified user

Version and License
[--version|-V] | Print version
[--system-id|-Y] | Print system identifier
[--check-license|-C] | Checks if license is valid
[--check-maintenance|-M] | Checks maintenance expiration

 13

nScrub v.1.3 User’s Guide

Working Modes
The software can run in transparent bridge or routing mode, in symmetric or asymmetric
mode.

Transparent Bridge Mode

When running the software as transparent bridge (default), an interface pair must be
specified for traffic bridging. This mode can work both in bidirectional mode, inspecting
traffic in both directions:

or in asymmetric mode, specifying the --asymmetric-routing|-A option (inbound
only), when used for instance with traffic diversion techniques:

 14

nScrub v.1.3 User’s Guide

Routing Mode

When running the software in routing mode (specifying the —routing|-x option), one or
two interfaces can be used. Also in this configuration both symmetric and asymmetric
mode can be used.
In this mode a routing table must be configured using the API or the CLI tool. In order to
learn how to use the API read the Traffic Enforcement Configuration section below and the
API documentation.

 15

nScrub v.1.3 User’s Guide

Performance and Tuning
This section covers a few key aspects for running the application at line-rate.

Hardware Configuration
First of all you should figure out what is the actual hardware configuration. Please make
sure that:

1. Memory is properly installed.

Please check on ark.intel.com the number of memory channels supported by your CPU,
and make sure there is a memory module installed for each channel. If you do not have
physical access to the machine, or you just want to double-check everything is properly
configured, you can use dmidecode. In the example below the machine has 4 memory
channels, and there is a memory module installed for each channel.

dmidecode | grep "Configured Clock Speed"
 Configured Clock Speed: 1600 MHz
 Configured Clock Speed: 1600 MHz
 Configured Clock Speed: 1600 MHz
 Configured Clock Speed: 1600 MHz

2. NICs are properly installed.

Please check the cards you are using are installed on PCIe slots with enough lanes and
speed for supporting the bandwidth you expect. You can check this from dmesg, or
doing some math using the PCIe speed based on version and the number of lanes
reported on the motherboard.

$ dmesg | grep Speed
[3.075885] ixgbe 0000:01:00.0: (Speed:5.0GT/s, Width: x8, Encoding Loss:20%)
[3.314675] ixgbe 0000:01:00.1: (Speed:5.0GT/s, Width: x8, Encoding Loss:20%)

In case of NUMA systems (i.e. multiple CPUs), please make sure the card is installed on
the right PCIe slot, directly connected to the CPU you are going to use for traffic
processing. You can use lstopo for this. In the example below there are 2 NICs, one is
installed on NUMA node 0 (eth0 and eth1) and one is installed on NUMA node 1 (eth1
and eth2).

lstopo
Machine (63GB)
 NUMANode L#0 (P#0 31GB)
 Socket L#0 + L3 L#0 (20MB)
 L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
 PU L#0 (P#0)
 PU L#1 (P#16)
 L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
 PU L#2 (P#2)
 PU L#3 (P#18)
 L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
 PU L#4 (P#4)
 PU L#5 (P#20)
 L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3
 PU L#6 (P#6)

 16

http://ark.intel.com

nScrub v.1.3 User’s Guide
 PU L#7 (P#22)
 L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4
 PU L#8 (P#8)
 PU L#9 (P#24)
 L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5
 PU L#10 (P#10)
 PU L#11 (P#26)
 L2 L#6 (256KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6
 PU L#12 (P#12)
 PU L#13 (P#28)
 L2 L#7 (256KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7
 PU L#14 (P#14)
 PU L#15 (P#30)
 HostBridge L#0
 PCIBridge
 PCI 8086:154d
 Net L#1 "eth0"
 PCI 8086:154d
 Net L#2 "eth1"
 NUMANode L#1 (P#1 31GB)
 Socket L#1 + L3 L#1 (20MB)
 L2 L#8 (256KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8
 PU L#16 (P#1)
 PU L#17 (P#17)
 L2 L#9 (256KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9
 PU L#18 (P#3)
 PU L#19 (P#19)
 L2 L#10 (256KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10
 PU L#20 (P#5)
 PU L#21 (P#21)
 L2 L#11 (256KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11
 PU L#22 (P#7)
 PU L#23 (P#23)
 L2 L#12 (256KB) + L1d L#12 (32KB) + L1i L#12 (32KB) + Core L#12
 PU L#24 (P#9)
 PU L#25 (P#25)
 L2 L#13 (256KB) + L1d L#13 (32KB) + L1i L#13 (32KB) + Core L#13
 PU L#26 (P#11)
 PU L#27 (P#27)
 L2 L#14 (256KB) + L1d L#14 (32KB) + L1i L#14 (32KB) + Core L#14
 PU L#28 (P#13)
 PU L#29 (P#29)
 L2 L#15 (256KB) + L1d L#15 (32KB) + L1i L#15 (32KB) + Core L#15
 PU L#30 (P#15)
 PU L#31 (P#31)
 HostBridge L#8
 PCIBridge
 PCI 8086:154d
 Net L#7 "eth2"
 PCI 8086:154d
 Net L#8 "eth3"

In case of NUMA system it is important to tell the driver what is the CPU we are going to
use for packet processing for each network interface, in order to setup resources in the
right place in memory and improve memory locality. In order to do this, please refer to the
Installation - PF_RING section where we configured the driver using:

echo “RSS=0,0” > /etc/pf_ring/zc/ixgbe/ixgbe.conf

In order to specify the CPU affinity it is possible to use the numa_cpu_affinity parameter,
passing core IDs for memory allocation, one per interface (4 interfaces in this example):

 17

nScrub v.1.3 User’s Guide
echo “RSS=0,0,0,0 numa_cpu_affinity=0,0,8,8” > /etc/pf_ring/zc/ixgbe/
ixgbe.conf

Where 0 is a core ID on the first CPU, 8 is a core ID on the second CPU.

Please remember to reload PF_RING using the init.d script after changing the
configuration.

Load Balancing
Load balancing is important for distributing workload across multiple CPU cores. The
application supports traffic distribution using hardware RSS support or using zero-copy
software distribution based on ZC.

Hardware Traffic Distribution (RSS)

By default the application expects that hw RSS has been configured, spawning as many
processing threads as the number of RSS queues. In the Installation - PF_RING section
we configured the driver with the “auto” RSS mode (as many RSS queues as the number
of CPU cores) using:

echo “RSS=0,0” > /etc/pf_ring/zc/ixgbe/ixgbe.conf

It is also possible to specify the number or queues, passing the number of queues per
interface (2 interfaces, 4 queues per interface in this example) to the RSS parameter:

echo “RSS=4,4” > /etc/pf_ring/zc/ixgbe/ixgbe.conf

Please remember to reload PF_RING using the init.d script after changing the
configuration.

It is possible to check the current number of RSS queues for each interface from the
informations reported by PF_RING under /proc:

$ cat /proc/net/pf_ring/dev/eth1/info | grep Queues
Max # TX Queues: 4
Used RX Queues: 4

 18

nScrub v.1.3 User’s Guide

Software Traffic Distribution (ZC)

Another option for distributing traffic across cores is using zero-copy software distribution
based on ZC. This mode provides more flexibility in traffic distribution as hash is
computed in software and it can be applied to any packet header or payload. Please note
RSS is still needed for lock-free zero-copy transmission as depicted in the picture below.
In order to enable software distribution the --sw-distribution|-w option should be
specified into the nscrub configuration file.

CPU Affinity
CPU affinity is very important for equally distributing the load across cores. There are a
few options for setting the core affinity for each thread used by the application.

Time-Source Thread

In order to have a precise low-cost time source, a dedicated thread is used. It is possible
to bind this thread to a core using the --time-source-affinity|-T option.

Processing Threads

Using the load balancing support, both hardware RSS or software distribution, a
processing thread is spawned for each RSS queues. It is possible to bind each thread to
a core by listing core IDs in the nscrub configuration file using the --thread-
affinity|-g option (colon-separated list). Example (4 RSS queues):

cat /etc/nscrub/nscrub.conf
--wan-interface=zc:eth1
--lan-interface=zc:eth2
--time-source-affinity=0
--thread-affinity=1:2:3:4
--log-path=/var/tmp/nscrub.log
--pid-path=/var/tmp/nscrub.pid
--daemon

 19

nScrub v.1.3 User’s Guide

Load Balancer Thread (Software Traffic Distribution only)

Using software distribution (--sw-distribution|-w) in place of hw RSS, an additional
balancer thread is used for computing the packet hash and steer the packet to the right
processing thread. It is possible to set the core affinity for this thread using the --
balancer-affinity|-r option. Example:

cat /etc/nscrub/nscrub.conf
--wan-interface=zc:eth1
--lan-interface=zc:eth2
--time-source-affinity=0
--balancer-affinity=1
--thread-affinity=2:3:4:5
--log-path=/var/tmp/nscrub.log
--pid-path=/var/tmp/nscrub.pid
--daemon

 20

nScrub v.1.3 User’s Guide

Traffic Enforcement Configuration
Once the application is up and running, it’s time to configure it for enabling traffic
mitigation. This means we need to create virtual scrubbers (objects containing protection
policies based on target), each virtual scrubber inspects the traffic matching one, or
more, destination subnets. Each virtual scrubber, identified by a target ID, has its own
traffic enforcement profiles that can be configured/changed/inspected at runtime using
the API.

This sections provides some basic knowledge for configuring the engine using the REST
API. Please refer to the API documentation for the full API specifications.

Note that although this section covers the configuration using the REST API, a few
command line tools (see Appendix A) are also available to ease the configuration,
including:

• nscrub-cli, implementing a console with autocompletion with all the functionalities
implemented by the REST API.

• nscrub-add, a wizard tool for creating new victims with a basic configuration (further
customisations are usually needed using nscrub-cli or the API).

• nscrub-export, a tool for dumping the current configuration for a specific victim.

Default credentials for configuring nscrub:

 Username: admin
 Password: admin
 HTTP port: 8880
 HTTPs port: 4443
 Socket binding: localhost

Victims definition

Victims can be dynamically added, removed and configured at runtime.

Read active victims using the REST API:

curl -u <user>:<password> http://<host>:<port>/targets?action=list

or do the same using the command line tool:

$ nscrub-cli
localhost:8880> list targets

Add a new victim:

curl -u <user>:<password> http://<host>:<port>/targets?
action=add\&target_id=<victim name>\&subnet=<subnet (CIDR notation)>

Each victim is bound to a few profiles: default, black, white, gray. The default profile
applies to all unknown sources, while the other profiles apply to the corresponding lists of
source IPs (attackers). In essence black, white and gray are just placeholders for defining
different traffic enforcement policies based on source IP “colour”. The white profile is a

 21

nScrub v.1.3 User’s Guide
special profile, in fact source IPs recognised as real and legitimate are automatically
added to this special list.

It is a common practice to set the “drop all” policy to the black profile:

curl -u <user>:<password> http://<host>:<port>/profile/all/drop?
target_id=<victim name>\&profile=black\&action=enable

It is also a common practice to set the “accept all” policy to the white profile:

curl -u <user>:<password> http://<host>:<port>/profile/all/accept?
target_id=<victim name>\&profile=white\&action=enable

The gray profile is usually used for applying special policies to “special” IPs. For instance
it is a common practice to set the “default” policy to “drop” and then specify more
specific policies to let specific traffic types through.

curl -u <user>:<password> http://<host>:<port>/profile/default?
target_id=<victim name>\&profile=gray\&action=update\&value=drop

The default profile is where the real traffic enforcement policies go, for checking unknown
traffic. For instance it is also a common practice to set the default policy to drop:

curl -u <user>:<password> http://<host>:<port>/profile/default?
target_id=<victim name>\&profile=default\&action=update\&value=drop

Accept ICMP:

curl -u <user>:<password> http://<host>:<port>/profile/icmp/accept?
target_id=<victim name>\&profile=default\&action=enable

Drop UDP:

curl -u <user>:<password> http://<host>:<port>/profile/udp/drop?
target_id=<victim name>\&profile=default\&action=enable

Accept UDP port 53 (DNS):

curl -u <user>:<password> http://<host>:<port>/profile/udp/src/53/accept?
target_id=<victim name>\&profile=default\&action=enable

Check TCP traffic:

curl -u <user>:<password> http://<host>:<port>/profile/tcp/syn/check_method?
target_id=<victim name>\&profile=default\&action=update\&value=rfc

It is also possible to set a rate limiter (in this example per source) to set a threshold to the
traffic rate.

curl -u <user>:<password> http://<host>:<port>/profile/rate?target_id=<victim
name>\&profile={black, white, gray, default}[\&action=update\&value=<pkts/s>]

Many more policies are available, please refer to the full API documentation.

Please note all the settings can also be read, omitting the action (and value) parameter.

 22

nScrub v.1.3 User’s Guide
In order to temporarily disable traffic checks, it is possible to put the system in bypass
state, both globally:

curl -u <user>:<password> http://<host>:<port>/bypass?[action={enable,
disable}]

or per victim:

curl -u <user>:<password> http://<host>:<port>/profile/bypass?
target_id=<victim name>\&profile=default[\&action={enable, disable}]

 23

nScrub v.1.3 User’s Guide

Traffic Monitoring and Statistics
This section shows the options for having visibility of the traffic under mitigation.

Statistics

The application provides global and per-victim statistics.

Global statistics are available through the logs:

tail -f /var/tmp/nscrub.log

or through the REST API:

curl -u <user>:<password> http://<host>:<port>/stats

Per-victim stats are available through the REST API:

curl -u <user>:<password> http://<host>:<port>/targets?
action=stats\&target_id=<target id>

Historical statistics from RRDs, both global and per-victim, are also available using a
browser connecting to:

 24

nScrub v.1.3 User’s Guide
http://<host>:<port>/monitor.html

Traffic Monitoring

The software has the ability to export some traffic to software queues for attaching
external applications, for traffic analysis or recording:

In order to enable auxiliary software queues for traffic monitoring, the --aux-queues|-O
option has to be added to the nScrub configuration file, specifying the number of queues
to allocate, which matches the maximum number of concurrent application that will
monitor the traffic (queues are single consumer).

--aux-queues 1

Please note that in order to avoid locking mechanisms, a queue per thread is created (we
call it “queue set”), for each consumer application.

Once auxiliary queues have been enabled, it is possible to configure them for exporting
sampled (or all) traffic (good, discarded, or all) to external applications through the API:

curl -u <user>:<password> http://<host>:<port>/mirror/<queue set id>/type[?
action=update\&value={forwarded, discarded, all}]
curl -u <user>:<password> http://<host>:<port>/mirror/<queue set id>/
sampling[?action=update\&value=<sampling rate (0 for no traffic)>]

Example:

curl -u <user>:<password> http://<host>:<port>/mirror/0/type?
action=update\&value=all
curl -u <user>:<password> http://<host>:<port>/mirror/0/sampling?
action=update\&value=100

It is possible for instance to use tcpdump for monitoring the traffic running one instance
per processing thread, specifying the cluster ID and thread/queue ID in the interface
name:

tcpdump -Q in -ni zc:99@0
tcpdump -Q in -ni zc:99@1
tcpdump -Q in -ni zc:99@2
tcpdump -Q in -ni zc:99@3

Alternatively, it is possible to aggregate all traffic to a single queue and run a single
tcpdump instance:

zbalance_ipc -i zc:99@0,zc:99@1,zc:99@2,zc:99@3 -c 100 -n 1

tcpdump -Q in -ni zc:100@0

In the same way it is possible to analyse the traffic using ntopng:

ntopng -i zc:99@0 -i zc:99@1 -i zc:99@2 -i zc:99@3

 25

nScrub v.1.3 User’s Guide

Appendix A - Command line tools
nscrub-cli is the command line tool for configuring nScrub using autocompletion, instead
of using the REST API manually.

You can run nscrub-cli to get access to the nscrub configuration, without any option or
passing user/password and host/port if you customised the nscrub configuration.

$ nscrub-cli -h
nscrub-cli [-v] [-h] [-a <user>:<password>] [-c <host>:<port>]

Run nscrub-cli to get a console, then type “help” to get a full list of supported commands.
Please refer to the REST API for a description.

A wizard tool nscrub-add is also available for creating a new target with a basic
configuration, providing the target ID, subnet and service type.

nscrub-add [options] <target id> <subnet> <target type>

Example:

$ nscrub-add WEBSERVER 192.168.1.1/32 web

Please note that further configurations are usually needed to create an optimal
configuration based on the specific target, it is possible to use nscrub-cli for that.

nscrub-cli also allows you to pass a configuration file containing nscrub-cli commands
using pipe. Example:

$ cat nscrub.conf
targets add TEST 192.168.1.2/32
targets add TEST 192.168.1.3/32
$ cat nscrub.conf | nscrub-cli

Please refer to the nscrub-cli help for an updated list of commands like in the example
below.

$ nscrub-cli
localhost:8880> help
status
stats
hostname [NAME]
users
useradd NAME GROUP PASSWORD
usermod NAME GROUP [PASSWORD]
userdel NAME
bypass [enable|disable]
mirror ID type [forwarded|discarded|all]
mirror ID sampling [RATE]
route
route add SUBNET gw IP
route del SUBNET
vlan id SRC-VLAN-ID reforge [DST-VLAN-ID]
list targets
add target ID SUBNET
del target ID SUBNET
purge target ID

 26

nScrub v.1.3 User’s Guide
target ID desc [DESCRIPTION]
target ID vlan reforge [DST-VLAN-ID]
target ID type [web|dns|game|isp]
target ID stats
target ID attackers show LISTNAME|dynamic|* white|gray|black|*
target ID attackers add LISTNAME SUBNET white|gray|black
target ID attackers del LISTNAME SUBNET
target ID attackers purge LISTNAME|dynamic
target ID attackers showlists
target ID attackers search LISTNAME|dynamic|* white|gray|black|* SUBNET
target ID attackers dynamic autopurging [enable|disable]
target ID attackers dynamic expiration [SEC]
target ID profile white|gray|black|default bypass [enable|disable]
target ID profile white|gray|black|default default [drop|pass]
target ID profile white|gray|black|default rate src [PPS]
target ID profile white|gray|black|default rate dst [PPS]
target ID profile white|gray|black|default all drop [enable|disable]
target ID profile white|gray|black|default all accept [enable|disable]
target ID profile white|gray|black|default ip
target ID profile white|gray|black|default ip ttl NUM drop [enable|disable]
target ID profile white|gray|black|default ip ttl NUM accept [enable|disable]
target ID profile white|gray|black|default udp
target ID profile white|gray|black|default udp drop [enable|disable]
target ID profile white|gray|black|default udp accept [enable|disable]
target ID profile white|gray|black|default udp src NUM drop [enable|disable]
target ID profile white|gray|black|default udp src NUM accept [enable|disable]
target ID profile white|gray|black|default udp dst NUM drop [enable|disable]
target ID profile white|gray|black|default udp dst NUM accept [enable|disable]
target ID profile white|gray|black|default udp fragment drop [enable|disable]
target ID profile white|gray|black|default udp fragment payload min_len [BYTES]
target ID profile white|gray|black|default udp fragment payload max_len [BYTES]
target ID profile white|gray|black|default udp checksum0 drop [enable|disable]
target ID profile white|gray|black|default udp payload min_len [BYTES]
target ID profile white|gray|black|default udp payload max_len [BYTES]
target ID profile white|gray|black|default udp rate src [PPS]
target ID profile white|gray|black|default udp rate dst [PPS]
target ID profile white|gray|black|default tcp
target ID profile white|gray|black|default tcp drop [enable|disable]
target ID profile white|gray|black|default tcp accept [enable|disable]
target ID profile white|gray|black|default tcp src NUM drop [enable|disable]
target ID profile white|gray|black|default tcp src NUM accept [enable|disable]
target ID profile white|gray|black|default tcp dst NUM drop [enable|disable]
target ID profile white|gray|black|default tcp dst NUM accept [enable|disable]
target ID profile white|gray|black|default tcp syn check_method [rfc|proxy|
bypass]
target ID profile white|gray|black|default tcp syn rfc threshold [PPS]
target ID profile white|gray|black|default tcp syn wl_session_only [enable|
disable]
target ID profile white|gray|black|default tcp syn rate src [PPS]
target ID profile white|gray|black|default tcp syn rate dst [PPS]
target ID profile white|gray|black|default tcp syn auto_blacklist [enable|
disable]
target ID profile white|gray|black|default tcp synack rate src [PPS]
target ID profile white|gray|black|default tcp synack rate dst [PPS]
target ID profile white|gray|black|default tcp synack wl_session [enable|
disable]
target ID profile white|gray|black|default tcp threshold [MBITPS]
target ID profile white|gray|black|default icmp
target ID profile white|gray|black|default icmp drop [enable|disable]
target ID profile white|gray|black|default icmp accept [enable|disable]
target ID profile white|gray|black|default icmp type NUM drop [enable|disable]
target ID profile white|gray|black|default icmp type NUM accept [enable|disable]
target ID profile white|gray|black|default gre
target ID profile white|gray|black|default gre drop [enable|disable]
target ID profile white|gray|black|default gre accept [enable|disable]
target ID profile white|gray|black|default dns

 27

nScrub v.1.3 User’s Guide
target ID profile white|gray|black|default dns request check_method [forcetcp|
default]
target ID profile white|gray|black|default dns request rate src [PPS]
target ID profile white|gray|black|default dns request rate transaction_id [PPS]
target ID profile white|gray|black|default dns request threshold [PPS]
target ID profile white|gray|black|default dns request type NUM drop [enable|
disable]
target ID profile white|gray|black|default pattern
target ID profile white|gray|black|default pattern NUM drop [{hex, string},
[payload+]{OFFSET, any},VALUE]
target ID profile white|gray|black|default http request field
target ID profile white|gray|black|default http request field NUM drop
[LABEL,VALUE]
help
quit

 28

nScrub v.1.3 User’s Guide

Appendix B - Utilities and Testing
This section provides a few examples for checking the mitigation and bridging
throughput.

SYN Mitigation

In order to test SYN mitigation you can use one of the SYN flood generators available on
internet, such as Juno:

wget http://packetstorm.wowhacker.com/DoS/juno.c
gcc -O2 juno.c -o juno

Throughput

In order to test the bridging throughput you can use iperf:

Target machine:

iperf -s --bind 192.168.1.254

Client machine:

iperf -c 192.168.1.254

 29

nScrub v.1.3 User’s Guide

Appendix C - Hugepages
This section describes how to enable hugepages into your system, a mandatory step for
running nscrub with ZC. Please note that hugepages are already loaded by the PF_RING
init.d script, this section aims to describe how hugepages work in order to provide the
knowledge needed for configuring and checking the hugepages status.

Linux typically uses memory pages of 4 KBytes, but provides an explicit interface to
allocate pages with bigger size called hugepages. It is up to developers/administrators to
decide when they have to be used.

Hugepages advantages:

• Large amounts of physical memory can be reserved for memory allocation, that
otherwise would fail especially when physically contiguous memory is required.

• Reduced overhead: as the TLB (Translation Lookaside Buffer) contains per-page
virtual to physical address mappings, using a large amount of memory with the
default page size leads to processing overhead for managing the TLB entries.

The default hugepage size is usually 2 MBytes. The hugepage size can be found in /proc/
meminfo:

cat /proc/meminfo | grep Hugepagesize
 Hugepagesize: 2048 kB

Hugepages can be dinamically reserved with:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

The above pages are allocated by the system without node affinity. If you want to force
allocation on a specific NUMA node you have to do:

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/
nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/
nr_hugepages

It is possible to change the default hugepages size and reserve large amounts of memory
at boot time using the following kernel options:

default_hugepagesz=1G hugepagesz=1G hugepages=4

If this commands returns a non-empty string, 2MB pages are supported:

cat /proc/cpuinfo | grep pse

If this commands returns a non-empty string, 1GB pages are supported:

cat /proc/cpuinfo | grep pdpe1gb

In order to make the hugepages available for use, Linux provides a RAM-based
filesystem called "hugetlbfs" that have to be mount'ed with:

 30

nScrub v.1.3 User’s Guide
mount -t hugetlbfs none /dev/hugepages

With no options the default hugepage size is used. To use a different size it is possible to
specify the "pagesize=" option. In order to control the maximum amount of memory bound
to a mount point it is possible to specify the "size=" option (size is rounded down to the
nearest hugepage size). Example:

mount -t hugetlbfs -o pagesize=1G,size=2G none /dev/hugepages

It is possible to see what pages are currently in use using the following command:

cat /sys/devices/system/node/node*/meminfo | grep Huge
Node 0 HugePages_Total: 1024
Node 0 HugePages_Free: 1024
Node 0 HugePages_Surp: 0

 31

nScrub v.1.3 User’s Guide

Appendix D - EULA
Licensee's use of this software is conditioned upon acceptance of the terms specified in
https://svn.ntop.org/svn/ntop/trunk/legal/LicenseAgreement/Reseller/EULA.txt

 32

	Introduction
	Main Features
	Versions
	Installation
	License Setup
	Engine Configuration
	Performance and Tuning
	Traffic Enforcement Configuration
	Traffic Monitoring and Statistics
	Appendix A - Command line tools
	Appendix B - Utilities and Testing
	Appendix C - Hugepages
	Appendix D - EULA

