
14 Years Of PF_RING
How packet capture acceleration evolved

from pf_ring.ko to PF_RING FT

Alfredo Cardigliano

cardigliano@ntop.org

mailto:cardigliano@ntop.org

SKY
PE

MySQL

SSH Face
book

SSL

HT
TP

DropBox

IM
AP

Introduction

• Network Monitoring tools need

high-speed, promiscuous,

raw packet capture.

• Specialized adapters are often not affordable, or not
flexible enough, or they do not provide an “open” API.

• Commodity network adapters and device drivers are
designed for providing host connectivity and are not
optimized for high-speed raw packet capture.

PF_RING
• PF_RING has been introduced in 2004 for

improving the performance of network monitoring
applications, accelerating packet capture which
was the main bottleneck on commodity hardware
at that time.

• Packet capture does not mean just providing a
buffer with the packet data, it also means
providing a rich set of features for manipulating,
filtering, and processing packets at high rates.

• PF_RING offers on commodity hardware (a
standard PC) the ability to receive and transmit at
wire-rate up to 100 Gbit.

 PF_RING

Application

The Bro Use Case
• Bro IDS is a flexible network analysis framework providing:

• analyzers for many protocols

• a scripting language to define monitoring policies

• application-layer state

• many other nice features

• CPU bound application due to processor-intensive features

• Let’s see how PF_RING has been used to accelerate Bro
throughout its evolution..

Packet Capture Evolution

The Kernel Module

pf_ring.ko Cluster TNAPI/RSS DNA ZC

• The pf_ring module copies packets
from the card to a circular buffer.

• The application reads packets directly
from the circular buffer.

Capture performance: up to 1-2 Mpps

Bro performance: 280 Kpps

 PF_RING.ko

Application

Circular
Buffer

Kernel

Load Balancing

pf_ring.ko Cluster TNAPI/RSS DNA ZC

• A PF_RING Cluster distributes traffic to
multiple threads or application instances.

• It keeps flow coherency (all packets for the
same flow to the same thread).

• Each application instance needs to handle a
portion of the whole stream.

Capture performance: up to 1-2 Mpps

Bro performance: 1 Mpps on 4 cores

PF_RING.ko

Thread
#1

Kernel

Thread
#2

Thread
#3

Thread
#4

Hardware Load-Balancing

pf_ring.ko Cluster TNAPI/RSS DNA ZC

• RSS is a hardware technology that distributes
the load across multiple queues keeping flow
coherency.

• TNAPI (deprecated) was a multi-threaded driver,
able to fully exploit RSS and multi-core
architectures to deliver data through
independent data streams.

Capture Performance: up to 8-10 Mpps on 4
cores

Bro performance: 1 Mpps on 4 cores

PF_RING.ko

Kernel

Thread
#1

Thread
#2

Thread
#3

Thread
#4

Zero-Copy Drivers

pf_ring.ko Cluster TNAPI/RSS DNA ZC

• DNA (today known as ZC Driver) is a
kernel-bypass technology for Intel cards.

• Packets get copied by the card directly
into the application memory.

Capture Performance: up to 15–20 Mpps/
core

Bro performance: 1 Mpps on 4 cores

DMA copy

Buffer

Application

Kernel

PF_RING
DNA

Zero-Copy API

pf_ring.ko Cluster TNAPI/RSS DNA ZC

• PF_RING ZC provides a flexible API
to create full zero-copy processing
patterns (load-balancing, pipelining,
etc).

• Inter-VM support with KVM.

• Multi-vendor FPGA support.

App 2

KVM

App 3

App 1
PF_RING

ZC
PF_RING

ZC

PF_RING
ZC

Capture Performance vs
Application Performance

• Capture speed with Intel cards using 1 core @ 10 Gbit:
M

pp
s

0
2,5

5
7,5
10

12,5
15

PCAP AF_PACKET PF_RING PF_RING ZC

10 Gbit

• Scale up to 100 Gbps with FPGA adapters using multiple
cores.

• Ok, capture speed is impressive, but how to further improve
application performance (without touching the code)?

Packet Filtering Evolution

Software Filtering - BPF

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• BPF filters (those supported by
applications like tcpdump and
Wireshark), are compiled into BPF
bytecode and executed by the
BPF Virtual Machine, for each
received packet.

 PF_RING.ko

Application

Kernel

(000) ldh [12]
(001) jeq #0x86dd jt 17 jf 2
(002) jeq #0x800 jt 3 jf 17
(003) ldb [23]
(004) jeq #0x6 jt 5. jf 17
(005) ld [26]
(006) jeq #0x1020304 jt 7 jf 17
(007) ld [30]
(008) jeq #0x5060708 jt 9 jf 17
(009) ldh [20]
(010) jset #0x1fff jt 17 jf 11
(011) ldxb 4*([14]&0xf)
(012) ldh [x + 14]
(013) jeq #0x50 jt 16 jf 14
(014) ldh [x + 16]
(015) jeq #0x50 jt 16 jf 17
(016) ret #262144
(017) ret #0

tcp and src host 1.2.3.4 and
dst host 5.6.7.8 and port 80

BPF Bytecode

Software Filtering - Rules

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• Software filtering rules consist of:

• Packet elements to match (ip, port,
protocol, etc).

• Action to be performed when a
packet matches the filter (pass,
discard, forward, etc).

 PF_RING.ko

Application

Kernel

<1.2.3.4, 5.6.7.8, 80, tcp>

<src host 1.2.3.4, dst host
5.6.7.8, port 80, protocol tcp,
discard>

Rule

Hardware Filtering Rules

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• Hardware filtering rules are
evaluated by the network card (no
CPU overhead).

• Available on Intel (82599/X520),
Silicom Redirector, others..

 PF_RING.ko

Application

Kernel

<1.2.3.4, 5.6.7.8, 80, tcp>

<src host 1.2.3.4, dst host
5.6.7.8, port 80, protocol tcp>

Rules

BPF to Filtering Rules

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• nBPF is a filtering engine supporting
the well-known BPF syntax.

• It can generate hardware rules, and
filter in software what is not filtered
by the card.

• Able to generate hardware rules for
FPGA adapters to filter traffic at 100
Gbit.

 PF_RING.ko

Application

Kernel

tcp and src host 1.2.3.4 and
dst host 5.6.7.8 and port 80

Rules

<1.2.3.4, 5.6.7.8, 80, tcp>

 nBPF

Hardware Traffic Steering

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• nBroker is a library for controlling traffic filtering and
steering on Intel 100 Gbit adapters (FM10000).

• CLI tool to easy the internal switch configuration:

> port eth1 match shost 10.0.0.1 dport 80 steer-to eth2

4x 10G

40G/100G

Application
X

Application

L7 Filtering

Kernel
Filtering

Hardware
Filtering nBPF nBroker FT/nDPI

• PF_RING FT (Flow Table) is a highly optimized
library able to classify L7 traffic.

• It leverages on nDPI to detect application protocols
(250+ protocols including Facebook, Skype,
Youtube, BitTorrent, …)

Performance: 10+ Mpps/core

Bro performance (filtering out multimedia traffic*):
1.6 Mpps / 10 Gbit Internet traffic on 4 cores (+60%)

* Multimedia traffic (NetFlix, Spotify, etc) is not really interesting for an IDS..

PF_RING FT

Flow Table

nDPI

Fragment
Cache

Conclusions
• Capture speed and (filtering) features has

been improved in PF_RING over the years
to assist applications processing high traffic
rate.

• Moving to 40 or 100 Gbit accelerating
packet capture is not enough, network
speed grows faster than CPU speed!

• The best way for improving the performance
of CPU bound applications is to scale with
cores and nodes, and filter as much as
possible.

• Do not confuse capture performance with
application performance.

