
Using eBPF for 
network traffic 
analysis

Samuele Sabella
Luca Deri



Network 
Monitoring

In the past few years the need to better understand 
what’s happening in our networks has lead from tools 
for volumetric data analysis to what is now called 
“deep packet inspection”



Containerization 
era

Containers are dynamical entities that provide 
microservices and can be contracted or expanded (i.e. 
elastic computing) on needs (e.g.  kubernetes).

Monitoring the system from the outside (i.e. looking at 
network packets), is no longer enough.



Monitoring 
Containers

The “photography” we take by looking at traffic can be 
out of date.

The information we gather looking at the packets only, 
are not complete:

▸ How much traffic belongs to user X? 
▸ Calculating latency by looking at packets  is 

reconstructing what we think is happening at a 
lower level

It is not an absolute view, we don’t know what is 
happening in what isn’t our domain!



Not a new idea: 
sysdig

Provides a way to observe the system at the kernel 
system call level. 

We receive system call events, that however are 
difficult and time consuming to interpret:

▸ We work at a high level
▸ Runtime complexity, heavy load on CPU

It is a very good tool but with some limitations.



eBPF: what is and 
how can be used?

In 1997, it was introduced in Linux kernel as a 
technology for in-kernel packet filtering. The authors 
are Steven McCanne and Van Jacobson from Lawrence 
Berkeley Laboratory.

eBPF extended what bpf virtual machine could do, 
allowing it to run other kind of events and take several 
action other than filtering



eBPF: lot of very 
useful tools

▸ tcplife: Trace the lifespan of TCP sessions and 
summarize.

▸ tcptop: Summarize TCP send/recv throughput by 
host.

▸ biolatency: Summarize block device I/O latency as a 
histogram.

▸ filetop: file reads and writes by process.



A toolkit for ebpf: 
bcc

An easy to use toolkit to write eBPF programs that 
offers a front-end interface in different languages: 

▸ Python
▸ Lua
▸ C++
▸ Rust

The repository offers a lot of examples on various 
topics



BPF: how it 
works



eBPF/bcc: basic 
usage

Events

▸ Kprobes
▸ Kretprobes
▸ Uprobes
▸ Uretprobs

Maps

▸ Hash tables
▸ Histograms
▸ Lru hash

Output

▸ printk
▸ perf_output

Helper functions

▸ bpf_get_current_task
▸ bpf_ktime_get_ns
▸ bpf_get_current_comm



eBPF: limitations

▸ eBPF and bcc are not mature projects
▸ Difficult to use
▸ Kernel functions available to use are the one 

determined by the flag prog_type
▸ We can’t to do cycles 
▸ VM is read only in kprobes!
▸ To access data external to ebpf stack we must use 

bpf_probe_read (not always necessary, the 
compiler may provide us support)



ebpflow: our 
objectives

Create an in-kernel flow monitoring tool for traffic 
analysis which can observe the system and take 
actions within the kernel.

▸ Reliable and trustworthy information on the status 
of the system when events take place.

▸ Low overhead event-based monitoring
▸ Information on users, network statistics, containers 

and processes 



ebpflow: basic tcp



ebpflow: how to 
spot containers?

Container can be spotted by looking at proc/cgroup, 
however retrieving information from there is a too slow 
operation

Containers are processes isolated with the use of 
namespaces and cgroups

▸ We can navigate through kernel data structures 
and read the namespaces

▸ We extract information at kernel level



ebpflow: ntop 
integration

▸ Low overhead
▸ Faithful picture of the state of the system
▸ Per user flow informations
▸ We can build the process hierarchy for each flow 







Demo



Future work

▸ In Linux Kernel version 4.16 a new functionality has 
been added: bpf_override_return
▹ Provides a way to override the return value of 

functions
▹ The kernel function has to be whitelisted to 

allow error injection with: 
ALLOW_ERROR_INJECTION

▹ It is supported only by few function (e.g. 
open_ctree) but in the future we hope also the 
networking functions will be supported



Conclusions

eBPF and bcc are great and powerful tools. However, 
due to the fact that they are not mature project, they 
are not stable and lack of some basic features. 

Some workaround are often needed.

They can offer a different point of view from the one 
provided by looking only at traffic that goes through 
the system



References

BCC github repository:

https://github.com/iovisor/bcc

Brendan Gregg blog

http://www.brendangregg.com/

Reading material

https://qmonnet.github.io/whirl-offload/2016/09/01/di
ve-into-bpf/

https://github.com/iovisor/bcc
http://www.brendangregg.com/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/


References

eBPF intro:

https://www.netronome.com/blog/bpf-ebpf-xdp-and-
bpfilter-what-are-these-things-and-what-do-they-me
an-enterprise/

Cool blog by Julia Evans:

https://jvns.ca/blog/2017/07/05/linux-tracing-syste
ms

https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

