Using eBPF for
network traffic

analysis

Samuele Sabella
Luca Deri

Network
Monitoring

In the past few years the need to better understand
what’s happening in our networks has lead from tools
for volumetric data analysis to what is now called
“deep packet inspection”

mlll., — =

Containerization
era

Containers are dynamical entities that provide
microservices and can be contracted or expanded (i.e.
elastic computing) on needs (e.g. kubernetes).

Monitoring the system from the outside (i.e. looking at
network packets), is no longer enough.

=T

Monitoring
Containers

The “photography” we take by looking at traffic can be
out of date.

The information we gather looking at the packets only,
are not complete:

> How much traffic belongs to user X?

> Calculating latency by looking at packets is
reconstructing what we think is happening at a
lower level

It is not an absolute view, we don’t know what is
happening in what isn’t our domain!

Not a new idea:
sysdig

Provides a way to observe the system at the kernel

system call level.
We receive system call events, that however are
difficult and time consuming to interpret:

> We work at a high level
> Runtime complexity, heavy load on CPU

It is a very good tool but with some limitations.

) Sysdig

eBPF: what is and
how can be used?

In 1997, it was introduced in Linux kernel as a
technology for in-kernel packet filtering. The authors
are Steven McCanne and Van Jacobson from Lawrence
Berkeley Laboratory.

eBPF extended what bpf virtual machine could do,
allowing it to run other kind of events and take several
action other than filtering

eBPF: lot of very
useful tools

> tcplife: Trace the lifespan of TCP sessions and
summarize.

> tcptop: Summarize TCP send/recv throughput by
host.

> biolatency: Summarize block device 1/0 latency as a
histogram.

> filetop: file reads and writes by process.

A toolkit for ebpf:
bcc

An easy to use toolkit to write eBPF programs that
offers a front-end interface in different languages:

> Python
» Lua

> C++

» Rust

The repository offers a lot of examples on various

topics

BPF: how it
works

LLVM / clang

000 64 3b 34
001 63 6b 20
002 74 1a 61
004 6d 20 71
005 a7 34 63

bytecode

native
code

eBPF/bcc: basic

usage

Events Output

> Kprobes > printk

> Kretprobes > perf_output

> Uprobes

> Uretprobs

Maps Helper functions

> Hash tables > bpf_get_current_task
> Histograms > bpf_ktime_get_ns

> Lru hash > bpf_get_current_comm

eBPF: limitations

> eBPF and bcc are not mature projects

> Difficult to use

> Kernel functions available to use are the one
determined by the flag prog__type

> We can’t to do cycles

> VM is read onlyin kprobes!

> To access data external to ebpf stack we must use
bpf_probe_read (not always necessary, the
compiler may provide us support)

ebpflow: our
objectives

Create an in-kernel flow monitoring tool for traffic
analysis which can observe the system and take
actions within the kernel.

> Reliable and trustworthy information on the status
of the system when events take place.

> Low overhead event-based monitoring

> Information on users, network statistics, containers
and processes

—>_eBPFlow

ebpflow: basic tcp

int tcp_v4_connect(struct sock* sk)
sk_hash

.

sk_hash.update(tid, sk)

o N

connect

: execution

ret = PT_REGS_RC (ctx)
tid = get_curr_tid()
if ('ret) {

sk _hash.delete(tid) .

.

}
sk_hash.lookup(tid)

;- == === [/l getallinfo and push event on buffer

continue execution

ebpflow: how to
spot containers?

Container can be spotted by looking at proc/cgroup,
however retrieving information from there is a too slow
operation

Containers are processes isolated with the use of
namespaces and cgroups

> We can navigate through kernel data structures
and read the namespaces
> We extract information at kernel level

ebpflow: ntop
integration

Low overhead

Faithful picture of the state of the system

Per user flow informations

We can build the process hierarchy for each flow

vV v v v

systemd [pid: 1] ntopng [pid: 2173]
@
localhost
systemd [pid: 1] influxd[pid: 2741]

giiels]

Active Flows

Application
Redis ¢
DNS ¢
DNS.ntop &
HTTP &
HTTP &
HTTP)
DNS ¢

Redis ¢

L4 Proto

TCP

UDP

UDP

TCP

TCP

TCP

UDP

TCP

Client

localhost #:42644

localhost #:51259

localhost ##:59163

localhost m:39174 [root >_ ntopng]
localhost ®:39172 [Q root >_ ntopng]
localhost ®:39170 [Q root >_ ntopng]
localhost #:40920

localhost ##:42646

Showing 1 to 8 of 8 rows. Idle flows not listed.

ntopng Enterprise Edition v.3.7.181015

User TR Interface [

a -

Server
localhost ::6379
localhost::domain

localhost::domain

localhost ™::8086 [influxdb >_ influxd]
localhost ™::8086 [influxdb >_ influxd]

localhost ™::8086 [influxdb >_ influxd]

localhost::domain

localhost ™::6379

87.35 kbit/s [66 pps]

A -~ Hosts ~ Interfaces ~

e e

0 bps
0 bps

10~ Hostsv €
Duration Breakdown
0022
<1sec Client Server
<1sec Client Server
<1sec
<1sec
<1sec
<1sec
<1sec

TCP Flags

Flow Status

localhost

Host
® process

Client Process Information
User Name

Process PID/Name

Server Process Information
User Name

Process PID/Name

HTTP

Dump Flow Traffic

systemd [pid: 1] =

systemd [pid: 1] =

Glient Server: (1) (7 (G720 53

This flow is completed and will expire soon.

Normal

' ntopng [pid: 21873]

" influxd [pid: 2741]

root

21873/ntopng [son of 1/systemd]

influxdb

2741/influxd [son of 1/systemd]
HTTP Method

Server Name

URL

Response Code

08

Client € Server: [T 70 =

GET
localhost &' +

localhost/query?db=ntopng&qg=S|
@

200

Demo

Future work

> In Linux Kernel version 4.16 a new functionality has

been added: bpf_override_return

> Provides a way to override the return value of
functions

> The kernel function has to be whitelisted to
allow error injection with:
ALLOW_ERROR_INJECTION

> |t is supported only by few function (e.g.
open_ctree) but in the future we hope also the
networking functions will be supported

Conclusions

eBPF and bcc are great and powerful tools. However,
due to the fact that they are not mature project, they
are not stable and lack of some basic features.

Some workaround are often needed.

They can offer a different point of view from the one
provided by looking only at traffic that goes through
the system

References

BCC github repository:
https://github.com/iovisor/bcc

Brendan Gregg blog
http://www.brendangregg.com/

Reading material

https://qmonnet.github.io/whirl-offload/2016/09/01/di
ve-into-bpf/

https://github.com/iovisor/bcc
http://www.brendangregg.com/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

References

eBPF intro:
https://www.netronome.com/blog/bpf-ebpf-xdp-and-
bpfilter-what-are-these-things-and-what-do-they-me
an-enterprise/

Cool blog by Julia Evans:

https://jvns.ca/blog/2017/07/05/linux-tracing-syste
ms

https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

