
Brussels - 2/3 February 2019

Merging packets with
System Events using eBPF

Luca Deri <deri@ntop.org>, @lucaderi
Samuele Sabella <sabella@ntop.org>, @sabellasamuele

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

About Us

• Luca: lecturer at the University of Pisa, CS Department,
founder of the ntop project.

• Samuele: student at Unipi CS Department, junior engineer
working at ntop.

• ntop develops open source network traffic monitoring
applications. ntop (circa 1998) is the first app we released
and it is a web-based network monitoring application.

• Today our products range from traffic monitoring, high-
speed packet processing, deep-packet inspection (DPI),
IDS/IPS acceleration, and DDoS Mitigation.

• See http://github.com/ntop/

 2

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

What is Network Traffic Monitoring?

• The key objective behind network traffic
monitoring is to ensure availability and smooth
operations on a computer network. Network
monitoring incorporates network sniffing and
packet capturing techniques in monitoring a
network. Network traffic monitoring generally
requires reviewing each incoming and outgoing
packet.

 3

https://www.techopedia.com/definition/29977/network-traffic-monitoring

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntop Ecosystem (2009): Packets Everywhere

 4

Pa
ck

et
s

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntop Ecosystem (2019): Still Packets [1/2]

 5

Pa
ck

et
s

Fl
ow

s

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntop Ecosystem (2019): Still Packets [2/2]

 6

Packets

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

What’s Wrong with Packets?

• Nothing in general but…
◦ It is a paradigm good for monitoring network traffic from
outside of systems on a passive way.
◦Encryption is challenging DPI techniques (BTW ntop
maintains an open source DPI toolkit called nDPI).
◦Virtualisation techniques reduce visibility when
monitoring network traffic as network manager are blind
with respect to what happens inside systems.
◦Developers need to handle fragmentation, flow
reconstruction, packet loss/retransmissions… metrics
that would be already available inside a system.

 7

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

From Problem Statement to a Solution

• Enhance network visibility with system introspection.
• Handle virtualisation as first citizen and don’t be
blind (yes we want to see containers interaction).

• Complete our monitoring journey and…
◦System Events: processes, users, containers.
◦Flows
◦Packets

• …bind system events to network traffic for enabling
continuous drill down: system events uncorrelated
with network traffic are basically useless.

 8

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Early Experiments: Sysdig [1/3]

• ntop has been an early sysdig adopter adding in
2014 sysdig events support in PF_RING, ntopng,
nProbe.

 9

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Early Experiments: Sysdig [2/3]

 10

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Early Experiments: Sysdig [3/3]

• Despite all our efforts, this activity has NOT been a
success for many reasons:
◦Too much CPU load (in average +10-20% CPU load) due
to the design of sysdig (see later).
◦People do not like to install agents on systems as this
might create interferences with other installed apps.
◦Sysdig requires a new kernel module that sometimes is not
what sysadmins like as it might invalidate distro support.
◦Containers were not so popular in 2014, and many people
did not consider system visibility so important at that time.

 11

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

How Sysdig Works

• As sysdig focuses on system calls for tracking a TCP
connections we need to:
◦Discard all non TCP related events (sockets are used for
other activities on Linux such as Unix sockets)
◦Track socket() and remember the socketId to process/
thread
◦Track connect() and accept() and remember the TCP
peers/ports.
◦Collect packets and bind each of them to a flow (i.e. this is
packet capture again, using sysdig instead of libpcap).

• This explains the CPU load, complexity…

 12

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Welcome to eBPF

eBPF is great news for ntop as
• It gives the ability to avoid sending everything to user-space but
perform in kernel computations and send metrics to user-space.

• We can track more than system calls (i.e. be notified when there
is a transmission on a TCP connection without analyzing packets).

• It is part of modern Linux systems (i.e. no kernel module needed).

 13

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

libebpfflow Overview [1/2]

 14

eBPF Setup

N
et

w
or

k
Ev

en
ts

Kernel

struct netInfo {
 __u16 sport;
 __u16 dport;
 __u8 proto;
 __u32 latency_usec;
};

struct taskInfo {
 __u32 pid; /* Process Id */
 __u32 tid; /* Thread Id */
 __u32 uid; /* User Id */
 __u32 gid; /* Group Id */
 char task[COMMAND_LEN], *full_task_path;
};

// ----- ----- STRUCTS AND CLASSES ----- ----- //
struct ipv4_kernel_data {
 __u64 saddr;
 __u64 daddr;
 struct netInfo net;
};

struct ipv6_kernel_data {
 unsigned __int128 saddr;
 unsigned __int128 daddr;
 struct netInfo net;
};

typedef struct {
 __u64 ktime;
 char ifname[IFNAMSIZ];
 struct timeval event_time;
 __u8 ip_version:4, sent_packet:4;

 union {
 struct ipv4_kernel_data v4;
 struct ipv6_kernel_data v6;
 } event;

 struct taskInfo proc, father;

 char cgroup_id[CGROUP_ID_LEN];
} eBPFevent;

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

libebpfflow Overview [2/2]

 15

 // Attaching probes ----- //
 if (userarg_eoutput && userarg_tcp) {
 // IPv4
 AttachWrapper(&ebpf_kernel, "tcp_v4_connect", "trace_connect_entry", BPF_PROBE_ENTRY);
 AttachWrapper(&ebpf_kernel, "tcp_v4_connect", "trace_connect_v4_return", BPF_PROBE_RETURN);
 // IPv6
 AttachWrapper(&ebpf_kernel, "tcp_v6_connect", "trace_connect_entry", BPF_PROBE_ENTRY);
 AttachWrapper(&ebpf_kernel, "tcp_v6_connect", "trace_connect_v6_return", BPF_PROBE_RETURN);
 }

 if (userarg_einput && userarg_tcp)
 AttachWrapper(&ebpf_kernel, "inet_csk_accept", "trace_accept_return", BPF_PROBE_RETURN);

 if (userarg_retr)
 AttachWrapper(&ebpf_kernel, "tcp_retransmit_skb", "trace_tcp_retransmit_skb", BPF_PROBE_ENTRY);

 if (userarg_tcpclose)
 AttachWrapper(&ebpf_kernel, "tcp_set_state", "trace_tcp_close", BPF_PROBE_ENTRY);

 if (userarg_einput && userarg_udp)
 AttachWrapper(&ebpf_kernel, "inet_recvmsg", "trace_inet_recvmsg_entry", BPF_PROBE_ENTRY);
 AttachWrapper(&ebpf_kernel, "inet_recvmsg", "trace_inet_recvmsg_return", BPF_PROBE_RETURN);

 if (userarg_eoutput && userarg_udp) {
 AttachWrapper(&ebpf_kernel, "udp_sendmsg", "trace_udp_sendmsg_entry", BPF_PROBE_ENTRY);
 AttachWrapper(&ebpf_kernel, "udpv6_sendmsg", "trace_udpv6_sendmsg_entry", BPF_PROBE_ENTRY);
 }

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Gathering Information Through eBPF

• In linux every task has associated a struct (i.e.
task_struct) that can be retrieved by invoking the
function bpf_get_current_task provided by eBPF.
By navigating through the kernel structures it can
be gathered:
◦uid, gid, pid, tid, process name and executable path
◦cgroups associated with the task.
◦connection details: source and destination ip/port, bytes
send and received, protocol used.

 16

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Containers Visibility: cgroups and Docker

• For each container Docker creates a cgroup
whose name corresponds to the container
identifier.

• Therefore by looking at the task cgroup the
docker identifier can be retrieved and further
information collected.

 17

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

TCP Under the Hood: accept

A kprobe has been attached to inet_csk_accept
◦Used to accept the next outstanding connection.
◦Returns the socket that will be used for the
communication, NULL if an error occurs.
◦ Information is collected both from the socket returned
and from the task_struct associated with the process
that triggered the event.

In a similar fashion events concerning
retransmissions and socket closure can be
monitored.

 18

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

TCP Under the Hood: connect

An hash table, indexed with thread IDs, has been
used:
◦When connect is invoked the socket is collected from
the function arguments and stored together with the
kernel time.
◦When the function terminates the execution, the return
value is collected and the thread ID is used to retrieve
the socket from the hash table.
◦The kernel time is used to calculate the connection
latency.

 19

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Using libebpfflow from CLI

 20

deri@ubuntu18 205> sudo ./ebpflow
kProbes attached
Output buffer opened
[ktime: 0][pid: 11443][uid: 0][gid: 1000][sudo]
|__ parent: [pid: 11318][uid: 1000][gid: 1000][tcsh]
|__ netinfo: [UDP/snd][IPv4][addr: 127.0.0.1:56452 <-> 127.0.0.1:53]
|__ [minor_faults: 213][major_faults: 0]
[ktime: 1][pid: 10215][uid: 997][gid: 997][pihole-FTL]
|__ parent: [pid: 1][uid: 0][gid: 0][systemd]
|__ netinfo: [UDP/rcv][IPv4][addr: 127.0.0.1:56452 <-> 127.0.0.1:53]
|__ [minor_faults: 5849][major_faults: 0]
[ktime: 6][pid: 11443][uid: 0][gid: 1000][sudo]
|__ parent: [pid: 11318][uid: 1000][gid: 1000][tcsh]
|__ netinfo: [UDP/snd][IPv4][addr: 127.0.0.1:43457 <-> 127.0.0.1:53]
|__ [minor_faults: 216][major_faults: 0]
[ktime: 7][pid: 10215][uid: 997][gid: 997][pihole-FTL]
|__ parent: [pid: 1][uid: 0][gid: 0][systemd]
|__ netinfo: [UDP/rcv][IPv4][addr: 127.0.0.1:43457 <-> 127.0.0.1:53]
|__ [minor_faults: 5849][major_faults: 0]
[ktime: 31308][pid: 1136][uid: 114][gid: 117][chronyd]
|__ parent: [pid: 1][uid: 0][gid: 0][systemd]
|__ netinfo: [UDP/snd][IPv4][addr: 127.0.0.1:34324 <-> 127.0.0.1:123]
|__ [minor_faults: 147][major_faults: 2]
[ktime: 31437][pid: 1136][uid: 114][gid: 117][chronyd]
|__ parent: [pid: 1][uid: 0][gid: 0][systemd]
|__ netinfo: [UDP/rcv][IPv4][addr: 213.251.52.250:123 <-> 192.168.1.87:34324]
|__ [minor_faults: 147][major_faults: 2]
[ktime: 52712][pid: 1136][uid: 114][gid: 117][chronyd]
|__ parent: [pid: 1][uid: 0][gid: 0][systemd]
|__ netinfo: [UDP/snd][IPv4][addr: 127.0.0.1:34751 <-> 127.0.0.1:123]
|__ [minor_faults: 147][major_faults: 2]

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Integrating eBPF with ntopng

• We have done an early integration of eBPF with ntopng
using the libebpflow library we developed:
◦ Incoming TCP/UDP events are mapped to packets monitored by
ntopng.
◦We’ve added user/process/flow integration and partially
implemented process and user statistics.

• Work in progress
◦Container visibility (including pod), retransmissions… are
reported by eBPF but not yet handled inside ntopng.
◦To do things properly we need to implement a system interface
in ntopng where to send all system events.
◦Decide how/if netlink will be part of the equation.

 21

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntopng with eBPF: Flows

 22

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntopng with eBPF: Users + Processes

 23

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

ntopng with eBPF: Processes + Protocols

 24

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Current eBPF Work Items: UDP

• Contrary to TCP, in UDP we need to handle
packets. To avoid overloading the system we are
using an in-kernel LRU to minimise load: is there a
better option available that avoids us playing with
packets at all?

• As in UDP each packet can have a different
destination, intercepting up in the stack some
metadata info are missing (local IP/Ethernet is
computed after routing decision).

• Better multicast handling.

 25

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

BCC/eBPF Pitfalls

• BCC (BPF Compiler Collection) has limitations in terms of:
◦Function complexity/length: memory/stack and loop unroll are
limited and this might be a problem in some cases (e.g. decoding).
◦Sometimes its behaviour is non deterministic and the same code
works with the dev but fails to compile with the stable version.
◦No ability to read the BCC API version (functions prototypes
change cross versions).

• Inability to read message drops number.
• Packet decoding can 
be a nightmare due 
to restrictions on 
function calls

 26

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

Brussels - 2/3 February 2019

Conclusions

• With eBPF it is now possible to have full system and
network visibility in an integrated fashion.

• Contrary to Sysdig, eBPF load on the system is basically
unnoticeable and no kernel module is necessary (i.e.
issues of early work are now solved).

• Container/user/process information allows us to
enhance network communications with metadata that is
great not just for visibility but also for spotting malicious
system activities.

• System visibility will be integrated in ntopng 4.x due later
this year.

 27

http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/
http://www.ntop.org/

