Augmented Network Visibility

with High-Resolution Metrics

Simone Mainardi, PhD mainardi@ntop.org

Agenda

- Network visibility state-of-the-art and benefits of highresolution metrics
- Building an high-resolution network monitoring solution ntopng, InfluxDB and Grafana

Network Visibility

- In general, network visibility is provided by means of metrics
 - bytes, packets, applications (e.g, YouTube, FaceBook),
 ...
- Metrics are sampled at discrete time intervals the shorter the interval, the higher the resolution

Inter-Interval Blindness

- Nothing is known on the metric evolution between consecutive samples
- Being able to increase the resolution reduces the unknowns
 Sampling

Let's See an Example

- Same volume of traffic transferred
 - Free link
 - Fully-utilized link
- Client and server connected to a GbE switch
- iperf for the transfer (<u>https://github.com/esnet/iperf</u>)
- monitoring with ntopng (<u>https://github.com/ntop/ntopng</u>)
 - 5-min vs 10-sec traffic samples

Free vs Fully-Utilized Link: 5-min Samples

client: simone@192.168.2.222:~\$ iperf -c develv5 -p 8082 -i 1 -t 9999 -n 10240M

server: simone@192.168.2.225:~\$ iperf -s -p 8082 -i 1 -t 99999

Free vs Fully-Utilized Link: 10-sec Samples

ntop						æ - A	✓ Flows	Hosts 🗸	Interfaces - D	evices 🗸 🛛 🌞 🗸	Q Search	
Host: 192.168.2.22	22	Traffic P	Packets Po	orts Peers	ICMP	Protocols	DNS HT	TP Flows	s Sites SNM	P Talkers	Q A •	\$ 5
O 5m 30m	1h 1d	1w 1M	1Y Cus	tom Begin	Date/Time: 14/01/201	9 21:25:00	E	nd Date/Time:	9 22:25:00	Apply	- 1M + 1	₽
FOSDEM -				FOSDE	M (sent) 🛛 🔴	FOSDEM (rcvd)	O 1M ago	OTrend OEMA	OSMA ORSI cur	r vs past (right axis)	OAvg O95th Pe	rc
800 Mbit/s												
640 Mbit/s 480 Mbit/s												
320 Mbit/s			_									
160 Mbit/s 0 21:25:00	21:30:00	21:35:00	21:40:0	0 21:45:0	0 21:	50:00 21:	55:00 2	2:00:00 22:	05:00 22:10:00	22:15:00	22:20:00	22:25:00
Total: 21.48 G	В	g	95th Percentile: 3	88.13 Mbit/s		Aver	age: 51.25 Mbit	/s	Ma	x: 980.52 Mbit/s @ 14	/01/2019 21:40:20	

client: simone@192.168.2.222:~\$ iperf -c develv5 -p 8082 -i 1 -t 9999 -n 10240M

server: simone@192.168.2.225:~\$ iperf -s -p 8082 -i 1 -t 99999

Total: 21.48 GB

Why Care? Throughput

- Some applications expect the network to provide them a minimum throughput
 - VoIP
 - Realtime Video
- Failing to meet such requirements could cause intermittent user experience and application performance degradation
- 10-sec throughput **!=** 5-min throughput

Why Care? Burstiness

- Detect bursty traffic
- Bursts can cause network buffers to overflow
 - Packet drops while having a low average link utilization
- Cause network equipment further down the line to deliver packets at odd intervals, determining latency and jitter issues
- 10-sec samples can highlight bursts averaged out when using 5-min samples

Augmented Visibility: Theory

- Monitoring tool that is able to generate metrics up to a packet-by-packet resolution
- Big-data store that is able to retain sub-minute samples
- Visualization/analytics platform for the analysis

Augmented Visibility: Practice

- Monitoring tool: ntopng
- Big-data store: InfluxDB
- Visualization/analytics platform: Grafana

Monitoring Tool: ntopng

O Unwatch ▼	128	★ Unstar	2,352	% Fork	283

- opensource web-based network monitoring tool
- https://github.com/ntop/ntopng

ntop		Flows Hosts Interfaces Devices	🔅 - 🕐 - Q Search
eth0: Top Local Talkers	Actual Traffic	eth0: Realtime Top Application Traffic	Network Interfaces: Realtime Traffic
po-derLnic.it (po-der)	203.49 kbit/s 🕹	SNMP Unknown	enp5s0 eth0 lo
Casial di Otolare (Casialdi Collare)	1.57 kbit/s 🛧	SSL ICMP MDNS UbuntuONE	1.12 Mbit/s
maada (Passiadaria Adam)	1.57 kbit/s 🛧	240 Kbit/s	960 Kbit/s
ngnor.nc.t	1.57 kbit/s 🕹	200 Kbit/s	800 Kbit/s
jewileh přestalic. il [IPv6]	550.28 bit/s 🛧	160 Kbit/s	640 Kbit/s
[IPv6]	550.28 bit/s 🛧	80 Kbit/s	480 Kbit/s
Net 200 88/16/16/81	550.28 bit/s 🛧	40 Kbit/s	160 Kbit/s
		15:37:09 15:38:33	15:37:10 15:38:34

Sub-Min Samples with ntopng

- ntopng architecture
 - Packet capture thread
 - Periodic activities
- Originally based on RRDs, ntopng has been extended to produce 10-second samples, e.g., bytes(t), bytes(t+10), bytes(t+20), ...
- Samples are temporary stored and periodically POST-ed to InfluxDB

Configurations

Grafana: Dashboards

Grafana #2: Alerts

Demo

• Let's see ntopng, InfluxDB and Grafana in action...

Take-Home

Fort me on CitHub

- High-resolution metrics can unveil traffic patterns hidden at lower-resolutions
- Effective solution for high-resolution network monitoring involves ntopng (monitoring) + InfluxDB (storage) + Grafana (visualization / analysis)
- <u>mainardi@ntop.org</u>

Appendix

Getting the Samples

 A series of technologies can be used to produce samples of network metrics, among which

Technology	How	Max Resolution
SNMP	periodic polls to read counters	minutes
sFlow	read counter samples sent by network devices	minutes
NetFlow	read incoming data records	flow lifetime
ntopng	process raw traffic packets	packet-by- packet

Augmented Visibility: Challenges [1/2]

- Metrics Generation/Storage
 - Hosts in a corporate network can range from hundreds up to tens of thousands
 - Multiple metrics generated for every single host
 - Bytes sent and received
 - Layer-7 application protocols (e.g, Facebook, Youtube, ...)
 - RTT / Retransmits / Out-of-Order / Out-of-Sequence
 - 10,000 hosts @ 20 metrics / host / 10 seconds produce
 ~173 M samples per day

Augmented Visibility: Challenges [2/2]

- Analysis/Visualization
 - Unfeasible to visualize millions of samples on a dashboard
 - Rollups to prevent 'averaging-out' effects
 - Computationally expensive to run certain algorithms (e.g., ML, AI)
 - Rollups to produce statistically-meaningful data