Joining Forces: PF_RING and XDP

Introduction

Internet

 Network Monitoring tools need highspeed, promiscuous, raw packet capture.

 Commodity network adapters and device drivers are designed for providing host connectivity and are not optimized for high-speed raw packet capture.

 Specialized adapters are often not affordable, or not flexible enough.

Traditional Linux Networking

High-Speed Capture is Hard

Speed	Packets/sec	Nsec per packet
1	1.48 Mpps	675 ns
10	14.8 Mpps	67 ns
100	148 Mpps	6.7 ns

PF_RING [1/2]

- •Introduced in 2004 for improving the performance of network monitoring applications, accelerating **packet capture**.
- Packet capture does not mean just providing a buffer with the packet data, it also means providing a rich set of features for manipulating, filtering, and processing packets at high rates.

PF_RING [2/2]

- PF_RING today delivers wire-rate packet capture up to 100 Gbit on standard servers thanks to **kernel-bypass** ZC (Zero-Copy) drivers and support for many FPGA adapters.
- It is used by all ntop application, as well as third-party software (e.g. Bro, Snort, Suricata).

Capture Technologies

- Kernel-based
 - ∘ PF_RING
 - Libpcap/AF_PACKET
- Kernel-bypass
 - ∘ PF_RING ZC
 - DPDK
 - Snabb (Lua)
- Hybrid
 - «XDP/AF XDP)
 - netmap

XDP

- •XDP (eXpress Data Path) is a new layer in the Linux kernel before the network stack. User Space
- Not kernel bypass: data-plane inside the kernel.
- Drivers need to implement hooks to control (filter or redirect) packets before they reach the Linux stack.
- Programmable by means of eBPF.
- Under active development, all drivers will support it soon!

BPF (aka cBPF)

Classic BPF (Berkeley Packet Filter) (1992)

eBPF

- Enhanced BPF (2014)
- User-defined bytecode executed by an in-kernel sandboxed virtual machine.
- In-kernel hooks to attach eBPF programs and run them when the corresponding code path is traversed.

XDP Actions

AF_XDP

- AF_XDP is the socket used to deliver packets to userspace (applications).
- eBPF filters are used to REDIRECT packets into AF_XDP sockets.
- Integrated with the Linux network stack.
 - Access to kernel functionalities.
 - Forward selected traffic to userspace, while using the interface as a standard interface.

Redirect to AF_XDP

AF_XDP Pros/Cons

- + Adding driver support is fairly easy, all drivers will support it soon.
- + Almost the same performance as full kernel-bypass technologies.
- + Inside the kernel: integrated with the network stack.
- Inside the kernel: it does not support FPGA adapters implementing kernel-bypass.
- It just provides a pipe for moving packets from the driver to userspace, no enhanced packet processing features.

AF_XDP and PF_RING [1/2]

- PF_RING is a rich framework providing, in addition to packet capture, support for:
 - Packet decoding
 - Filtering
 - Fanout/Load-balancing
 - L7 classification and filtering/shunting
 - o . . .
- What about integrating AF_XDP with PF_RING?

Examples - BPF to Hardware Filtering

- Hardware filtering rules are not user-friendly
- nBPF is a filtering engine supporting the well-known BPF syntax
- It is able to generate hardware rules (able to filter traffic at high rates!), and filter in software what is not filtered by the card.

Examples - L7 Support [1/3]

- **PF_RING FT (Flow Table)** is a stateful highly optimized library able to classify and filter L7 traffic.
- It leverages on **nDPI** to detect application protocols (250+ protocols including Facebook, Skype, Youtube, BitTorrent, ...).

Examples - L7 Support [2/3]

- Discarding elephant flows is becoming a common practice for reducing the amount of traffic an IDS needs to inspect, typically multimedia traffic (e.g. Netflix) dramatically improving the performance.
- No need to change a single line of code for applications already using PF_RING (e.g. Suricata, Bro) or libpcap-over-pf_ring.

Examples - L7 Support [3/3]

- In traffic recording applications like n2disk, discarding unwanted traffic increases the data retention time.
- Filtering traffic based on static IP/Port fields is in many cases not a viable solution.
- Filtering out or shunting uninteresting traffic based on application protocols is probably a better option!
- E.g. for SSL we probably want to see the handshake only, while discarding all encrypted traffic taking a lot of disk space.

AF_XDP and PF_RING [2/2]

•Full kernel-bypass for FPGA adapters and Intel cards with PF RING ZC.

•Capture acceleration for other interfaces provided by AF XDP.

Others...

XDP Behind the PF_RING API

Conclusions

- •We are working on XDP integration in PF_RING to improve the performance of all adapters not supported by the PF_RING Zero-Copy drivers.
- This will combine the XDP advantages with the features provided by PF_RING for packet parsing, filtering, processing, fanout, load-balancing, L7 classification..
- It's still a bit too early as it is not yet supported by most of the kernels in production, but it's coming!

Thank you!

