
#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

SharkFest ’19 Europe

#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Packet-less traffic 
analysis using Wireshark

Luca Deri <deri@ntop.org>, @lucaderi 
Samuele Sabella <sabella@ntop.org>

ntop



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

About Us

• Luca is the founder of the ntop project that develops open 
source network traffic monitoring applications. All code is 
available at https://github.com/ntop  

• Samuele is an undergraduate student at the Computer 
Science Department of the University of Pisa. His interests 
include networking and machine learning. He’s an ntop team 
member. 

• ntop is a community:      http://t.me/ntop_community 
• We are part of the Intel Innovator program.

2

https://github.com/ntop
http://t.me/ntop_community


#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Network Traffic Monitoring

• Since the early days network monitoring has 
focused on packets. Indeed Wireshark is a packet 
analyser.  

• Packets are used to deliver user data across 
applications. 

• Users/applications have no packet visibility as they 
are a “low level” concept used at network layer.

3



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

(We Used to Say) Packets Never Lie

• Packet analysis provide useful information 
for understanding: 
◦ Network traffic issues. 
◦ Network usage not compliant with network policies (note: 

firewalls cannot help here). 
◦ Non-optimal performance. 
◦ Potential security flaws. 
◦ Ongoing (latent) attacks. 
◦ Data breach.

4



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ntop Ecosystem (2009): Packets

5



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ntop Ecosystem (2019): Still Packets

Packets

6



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What’s Wrong with Packets? [1/2]

Nothing in general, but they offer an external viewpoint  
◦ From which we have to reconstruct what is really happening 

from the application/user standpoint. 
◦ Good for monitoring network traffic from outside of a 

systems on a passive way (no agent installation required). 
◦ Packets are low level and need to be “interpreted” in order 

to understand what happens at a higher layer: TCP zero-
window, fragments, and packet retransmissions are invisible 
to applications and users that instead think in terms of 
perceived network performance and transmission errors.

7



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What’s Wrong with Packets? [2/2]

• Packets resemble synthetic information and lack of 
metadata that help understanding insights on the machine  

• Data encryption is a challenging for DPI techniques and 
Wireshark, making more complicated packet payload to be 
dissected and decoded. 

• Network administrators need to monitor packets 
fragmentation, flow reconstruction, packet loss/
retransmissions... metrics that would be already available 
inside a system but that instead are measured with packets.

8



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What about Containers?
• Make services portable across host platforms.  
• Provide an additional layer of isolation over processes.  
• Allow each service to use its own dependencies.

9



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

From Monolith to Microservices [1/3]

10



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

From Monolith to Microservices [2/3]

• Code of each microservice is stored in an 
isolated container, runs its own memory space, 
and functions independently.  

• Clearly organised architecture. Decoupled units 
have their specific jobs, can be reconfigured 
without affecting the entire application.  

• Deployments don’t require downtime. 

11



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

From Monolith to Microservices [3/3]

• If a microservice crashes, the rest of the system keeps 
going.  

•Each microservice can be scaled individually according 
to its needs.  

•Services can use different tech stacks (developers are 
free to code in any language, and HR are happy to hire 
programmers that do not necessarily have to code in 
the same programming language). 

12



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Networking and Namespaces

• In Linux network interfaces and routing tables/
entries are shared across the entire OS. 

• Sometimes (containers need that) it is 
necessary to define different and separate 
instances of network interfaces and routing 
tables that operate independent of each other 

• Linux implements this using namespaces. 

13



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Playing with Namespaces [1/4]

• Create a new namespace

14

# ip netns add wireshark 

# ip netns list 
cni-53bd89ab-d120-4015-0fc8-f5cb5ed45413 
cni-f4c00b32-2487-8e9c-3f60-e5d425aaa1d7 (id: 2) 
cni-0ce982f1-b6ac-2035-9ee0-a9cd8eb8d9d6 (id: 1) 
cni-920496f6-b76f-a6e0-145f-4fa315134140 (id: 0) 
wireshark 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Playing with Namespaces [2/4]

• Create a new veth interface peer

15

# ip link add veth0 type veth peer name veth1 

# ip link list 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
2: enp0s5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default 
qlen 1000 
    link/ether 00:1c:42:85:41:62 brd ff:ff:ff:ff:ff:ff 
… … … … 

8: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default 
qlen 1000 
    link/ether 5e:cb:a9:10:50:e9 brd ff:ff:ff:ff:ff:ff 
9: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default 
qlen 1000 
    link/ether ca:b4:d6:da:7c:b0 brd ff:ff:ff:ff:ff:ff 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Playing with Namespaces [3/4]

• Bind a veth to a namespace 

• Configure an IP address

16

# ip link set veth1 netns wireshark 

# ip netns exec wireshark ip link list 
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
8: veth1@if9: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000 
    link/ether 5e:cb:a9:10:50:e9 brd ff:ff:ff:ff:ff:ff link-netnsid 0 

# ip netns exec wireshark ifconfig veth1 192.168.10.1/24 up 
# ip netns exec wireshark ifconfig veth1 
veth1: flags=4099<UP,BROADCAST,MULTICAST>  mtu 1500 
        inet 192.168.10.1  netmask 255.255.255.0  broadcast 192.168.10.255 
        ether 5e:cb:a9:10:50:e9  txqueuelen 1000  (Ethernet) 
        RX packets 0  bytes 0 (0.0 B) 
        RX errors 0  dropped 0  overruns 0  frame 0 
        TX packets 0  bytes 0 (0.0 B) 
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Playing with Namespaces [4/4]

• Adding a veth to a physical network via a 
bridge

17

# brctl addif cbr0 veth0 

# brctl show 
bridge name bridge id  STP enabled interfaces 
cbr0  8000.6a870bb63548 no  veth0 

       veth5a9abc1c 
       veth884b5ab2 
       vethc6499b6e 
       vethd3260294



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Namespaces and Containers

18

veth1 (eth0)veth0

Container (namespace X)Physical Host (default ns)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What’s Wrong with Packets 
on Containerised Environments? [1/2]

• Virtualisation techniques reduce visibility when monitoring 
network traffic as network manager are blind with respect to 
what happens inside the systems. 

• Each container has a virtual ethernet interface so commands 
such as “tcpdump -i veth40297a6” won’t help as devops 
think in terms of container name, pod and namespace rather 
than veth. 

• Intra-container traffic stays inside the system without hitting 
the wire, thus monitoring traffic from/to the host won’t help.

19



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What’s Wrong with Packets 
on Containerised Environments? [2/2]

• Containers are not VMs which have a “long-range” 
time cycle  

• Environments like Kubernetes  are extremely dynamic. 
• It’s hard to associate an IP address to a service 

because addresses have become ephemeral. 
• System introspection can help us correlating the 

network traffic with the continuously moving parts of 
our infrastructure.

20



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Network and System Visibility

•Even on a container-centric sites we still need to: 
◦Monitor the infrastructure where containers are 
deployed: SNMP, NetFlow/IPFIX, and packets/Wireshark. 
◦Enable system introspection also to (legacy) non-
containerised systems so the whole infrastructure is 
monitored seamlessly. 

•This means that we need to enable Wireshark to 
be used on those containerised environments.

21



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Challenges using Wireshark 
with Containers [1/2]

• Intra-container traffic will never hit the wire: sniffing on eth0 
won’t help. 

• It is not intuitive to bind a veth interface to a container 
name/pod in order to sniff the container traffic: 
• Each containerised environment has its own tools and 

naming (kubernetes != docker, Linux ns != Kubernets 
namespaces). 

• Interfaces appear/disappear as container are created/
deleted.

22



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Challenges using Wireshark 
with Containers [2/2]

• As a container pool (pod) often offers a service 
by load-balancing the traffic across multiple 
containers, it is not intuitive to follow a packet 
journey when passing across NAT and 
balancing. 

• This problem will be discussed later in this 
presentation.

23



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

From Challenges to Solutions

• Enhance network visibility leveraging on system introspection for adding new 
metadata to network packets, this in order to ease troubleshooting. 

• Handle virtualisation as first citizen and don’t be blind (yes we want to 
observer containers interaction). 

• Complete our monitoring journey and...  
◦ System Events: processes, users, containers. 
◦ Flows 
◦ Packets 

• Bind metadata captured from system events at the application layer (e.g. 
tcp_connect invocation) to the network traffic for enabling continuous drill 
down: system events uncorrelated with network traffic are basically useless.

24



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Do we still need DPI?

• In this world DPI (Deep Packet Inspection) has marginal 
importance since we have information on the process that 
generated the network event 
• User, group 
• process, absolute path, pid, 
• container id, pod, namespace 

• If we are able to know that an application generated a 
network event and then we are able to bind that information 
to the network traffic then DPI makes less sense.

25



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

• Extend Wireshark to take into account 
system events in order to provide some 
context (process, user, PID…) to the 
captured traffic. 

• Hide Wireshark the complexity of containerised environments 
and let network administrators focus on packet analysis 
without them being container experts. 

• IMPORTANT: We don’t want to replace packet capture with 
events but rather complement captured traffic with 
additional information.

Design Goals

26



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Early Experiments: Sysdig

• Provides a way to observe the system at the kernel system call level. 
• ntop has been an early sysdig adopter adding in 2014 sysdig events 

support in ntop tools. 
• Despite all our efforts, this activity has NOT been a success for many 

reasons: 
• Too much CPU load (in average +10-20% CPU load) 
• requires a new kernel module that sometimes is not what 

sysadmins like as it might invalidate distro support. 
• Containers were not so popular in 2014, and many people did 

not consider system visibility so important at that time.

27



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

How Sysdig Works

• As sysdig focuses on system calls for tracking a TCP connections we 
need to: 

• Discard all nonTCP related events (sockets are used for other 
activities on Linux such as Unix sockets) 

• Track socket() and remember the socketId to process/thread. 
• Track connect() and accept() and remember the TCP peers/ports. 
• Collect packets and bind each of them to a flow (i.e. this is packet 

capture again, using sysdig instead of libpcap). 

• This explains the CPU load, complexity...

28



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Using Sysdig [1/2]

29

# sysdig -pc evt.type=connect or evt.type=bind 
25395 16:56:35.648903745 0 host (host) curl (26431:26431) > connect fd=3(<u>)  
25396 16:56:35.648914011 0 host (host) curl (26431:26431) < connect res=-2(ENOENT) tuple=0->ffff9458c020ec00 /var/run/nscd/socket  
25401 16:56:35.648922620 0 host (host) curl (26431:26431) > connect fd=3(<u>)  
25402 16:56:35.648924967 0 host (host) curl (26431:26431) < connect res=-2(ENOENT) tuple=0->ffff9458c020ec00 /var/run/nscd/socket  
25537 16:56:35.649282362 0 host (host) curl (26431:26431) > connect fd=3(<4>)  
25538 16:56:35.649289899 0 host (host) curl (26431:26431) < connect res=0 tuple=131.114.21.11:42026->131.114.21.6:53  
25699 16:56:35.650580211 0 host (host) curl (26431:26431) > bind fd=3(<n>)  
25700 16:56:35.650582767 0 host (host) curl (26431:26431) < bind res=0 addr=NULL  
25721 16:56:35.650631926 0 host (host) curl (26431:26431) > connect fd=3(<6>)  
25724 16:56:35.650642514 0 host (host) curl (26431:26431) < connect res=0 tuple=2a00:d40:1:3:131.114.21:11:41764-
>2a03:b0c0:2:d0::360:4001:443  
25727 16:56:35.650645184 0 host (host) curl (26431:26431) > connect fd=3(<6>2a00:d40:1:3:131.114.21:41764-
>2a03:b0c0:2:d0::360:4001:443)  
25728 16:56:35.650645950 0 host (host) curl (26431:26431) < connect res=0 tuple=0.0.0.0:0->0.0.0.0:0  
25729 16:56:35.650646881 0 host (host) curl (26431:26431) > connect fd=3(<4u>0.0.0.0:0->0.0.0.0:0)  
25732 16:56:35.650650936 0 host (host) curl (26431:26431) < connect res=0 tuple=::ffff:131.114.21.11:45555-
>::f87c:a283:c1a3:ffff:443  
25810 16:56:35.652983176 5 host (host) curl (26430:26430) > connect fd=3(<6>)  
25811 16:56:35.653036637 5 host (host) curl (26430:26430) < connect res=-115(EINPROGRESS) tuple=2a00:d40:1:3:131.114.21:11:60894-
>2a03:b0c0:2:d0::360:4001:443 

$ curl https://www.ntop.org 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Using Sysdig [2/2]

30

Load matters in particular on the cloud



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Towards eBPF

• 1992: Steve McCane and Van Jacobson introduced a VM model packets 
filtering. This version of BPF is now known as classic BPF (cBPF) 

• 1997: cBPF was introduced in Linux in kernel 2.1.75, as a technology for in-
kernel packet filtering 

• 2013: eBPF, created by Alexei Starovoitov, extended what bpf virtual machine 
could do. The VM is now able to intercept other kind of events and take 
several action other than filtering (https://lkml.org/lkml/2013/12/2/1066)

31

(ebpf official logo)

https://lkml.org/lkml/2013/12/2/1066


#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Welcome eBPF

• eBPF is great news for Wireshark as: 
• It gives the ability to avoid sending everything to user-space 

but perform in kernel computations and send metrics to 
user-space. 

• We can track more than system calls (i.e. be notified when 
there is a transmission on a TCP connection without 
analyzing packets). 

• It is part of modern Linux systems (i.e. no kernel module 
needed).

32



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpflow: eBPF for System Visibility

• Our aim has been to create an open-source library that offers a 
simple way to interact with eBPF network events in a transparent 
way. 

• Reliable and trustworthy information on the status of the system 
when events take place. 

• Low overhead event-based monitoring 
• Information on users, network statistics, containers and 

processes 
• Go and C/C++ support 

• https://github.com/ntop/libebpfflow (GNU LGPL)

33



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpflow: client-server [1/2]

user@Client::~/$ curl --local-port 1234 http://my.vps.org:8080 

• We host a service on port 8080 

• We use curl to http-GET using the local port 1234
user@Server:~/$ python -m SimpleHTTPServer 8080

34



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpflow: client-server [2/2]

35



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpflow: client-container [1/2]

user@Client:~/$ curl --local-port 1234 http://my.vps.org:8080 

• We Run detached container which serves https on port 80 

• We use curl to https-GET using the local port 1234
user@Server:~/$ docker run --rm -it -p 4443:8080 sabellas/cowserve



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpflow: client-container [2/2]



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Under the Hood

• The user writes a program in C 
• The program is translated in eBPF instructions (LLVM/clang) 
• A verifier check if the eBPF program is safe (e.g. no loops, only known external function allowed) 
• A just in time compiler translate the bytecode directly into a target architecture: x86, ARM, MIPS, 

etc. 
• The program is attached to the target kernel event such that whenever the event is triggered the 

program is executed



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpfflow Overview [1/2]

// Attaching probes ----- //                                                                                                                                                                              
if (userarg_eoutput && userarg_tcp) { 
    // IPv4                                                                                                                                                                                                 
    AttachWrapper(&ebpf_kernel, "tcp_v4_connect",  "trace_connect_entry",     BPF_PROBE_ENTRY); 
    AttachWrapper(&ebpf_kernel, "tcp_v4_connect",  "trace_connect_v4_return", BPF_PROBE_RETURN); 
    // IPv6                                                                                                                                                                                                 
    AttachWrapper(&ebpf_kernel, "tcp_v6_connect",  "trace_connect_entry",     BPF_PROBE_ENTRY); 
    AttachWrapper(&ebpf_kernel, "tcp_v6_connect",  "trace_connect_v6_return", BPF_PROBE_RETURN); 
}



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

libebpfflow Overview [2/2]
typedef enum { 
  eTCP_ACPT = 100, 
  eTCP_CONN = 101, 
  eTCP_CONN_FAIL = 500, 
  eUDP_RECV = 210, 
  eUDP_SEND = 211, 
  eTCP_RETR = 200, 
  eTCP_CLOSE = 300, 
} event_type; 

struct taskInfo { 
  u32 pid; /* Process Id */ 
  u32 tid; /* Thread Id  */ 
  u32 uid; /* User Id    */ 
  u32 gid; /* Group Id   */ 
  char task[COMMAND_LEN], *full_task_path; 
}; 

// separate data structs for ipv4 and ipv6 
struct ipv4_addr_t { 
  u64 saddr; 
  u64 daddr; 
};     
     
struct ipv6_addr_t {     
  unsigned __int128 saddr;     
  unsigned __int128 daddr;     
};

typedef struct { 
  ktime_t ktime; 
  char ifname[IFNAMSIZ]; 
  struct timeval event_time; 
  u_int8_t ip_version, sent_packet; 
  u16 etype; 

  union { 
  ┆ struct ipv4_addr_t v4; 
  ┆ struct ipv6_addr_t v6; 
  } addr; 

  u8  proto; 
  u16 sport, dport; 
  u32 latency_usec; 
  u16 retransmissions; 

  struct taskInfo proc, father; 
  char 
container_id[CONTAINER_ID_LEN]; 

  struct { 
  ┆ char *name; 
  } docker; 
   
  struct { 
  ┆ char *name; 
  ┆ char *pod; 
  ┆ char *ns; 
  } kube; 
} eBPFevent;



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Collecting Information: Processes

• In linux every task has associated a struct (i.e. task_struct) 
that can be retrieved by invoking the function 
bpf_get_current_task provided by eBPF. By navigating 
through the kernel structures it can be gathered: 
◦ uid, gid, pid, tid, process name and executable path 
◦ cgroups associated with the task. 

• Connection details instead are read from the socket 
structure. They include: source and destination ip/port, bytes 
send and received, protocol used.



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Collecting Information: Containers

• Container can be found in proc/cgroup, however retrieving 
information from there is a too slow operation. 

• Because containers are processes, we can navigate through kernel 
data structures and read information from inside the kernel where the 
container identifier can be collected. 

• Further interaction with the container runtimes (e.g. containerd or 
dockerd) in use is required to collect detailed information 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Event handling: TCP

4343



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Event handling: UDP

• In order to capture UDP events we attach eBPF 
code to net_dev_queue (process send buffer for 
network) and netif_receive_skb (process 
receive buffer from network) tracepoints and 
discard non UDP events.

44



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Wireshark/libebpflow Integration

45



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Our Original Contribution

• We have developed an open source Wireshark extension that enabled 
network traffic monitoring by leveraging on network events. It can be 
used: 
◦ by installing a Wireshark plugin 
◦ from the CLI 
◦ or… by running a container 

• The tool capture all network events within a system providing 
information both at  

• network level: addresses and ports 
• user level: users and processes

46



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

For the Impatient…

47

https://github.com/ntop/libebpfflow/tree/master/wireshark



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Option 1: Events Only Monitoring

48

Network Events (no packets)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Option 2: Events and Packets

49

(Glued) Network Event

Legacy Wireshark (packets)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Wireshark with eBPF [1/2]

• As explained before, system events are not 
received on a network interface but they over a 
kernel-to-userspace queue. 

• As Wireshark is unable to handle non network-
interfaces, the best solution for bringing events 
into it was to develop an extcap tool.

50



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Wireshark with eBPF [2/2]

51

Extcap 
eBPF 
Module



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

What is Extcap?

• “The extcap interface is a versatile plugin 
interface that allows external binaries to act as 
capture interfaces directly in wireshark”.  

• In essence it defines a set of command line 
conventions to interface external tools to send 
wireshark captured packets (even on non-
network interfaces) via a named pipe.

52

https://www.wireshark.org/docs/man-pages/extcap.html



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump [1/2]

53

$ ebpfdump  
Wireshark extcap eBPF plugin by ntop 

Supported command line options: 
--extcap-interfaces 
--extcap-version 
--extcap-dlts 
--extcap-interface <name> 
--extcap-config 
--capture 
--fifo <name> 
--debug 
--name <name> 
--custom-name <name> 
--help 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump [2/2]

54

$ ebpfdump --extcap-config --extcap-interface ebpf 
arg {number=0}{call=--ifname}{display=Interface Name}{type=selector}{tooltip=Network Interface from which 
packets will be captured} 
value {arg=0}{value=ebpfevents}{display=eBPF Events} 
value {arg=0}{value=ebpfzmqevents}{display=eBPF Remote Events (ZMQ)} 
value {arg=0}{value=veth73d654ec}{display=Pod kube-dns-6bfbdd666c-5jbmx, Namespace kube-system} 
value {arg=0}{value=veth02c998da}{display=Pod monitoring-influxdb-grafana-v4-78777c64c8-k8c26, Namespace 
kube-system} 
value {arg=0}{value=cbr0}{display=cbr0} 
value {arg=0}{value=veth3b09c8fd}{display=veth3b09c8fd} 
value {arg=0}{value=flannel.1}{display=flannel.1} 
value {arg=0}{value=enp0s5}{display=enp0s5} 
value {arg=0}{value=veth1e9ce659}{display=veth1e9ce659} 
value {arg=0}{value=lo}{display=lo} 
value {arg=0}{value=docker0}{display=docker0} 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Architecture

55

ebpfdump

libpcaplibpebpfflow

Events PacketsContainer 
Interaction

Extcap



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Operating Modes [1/5]

• (a) eBPF events: 
only eBPF events are returned (no packets). 
• Events are dumped as they are received and 

delivered to Wireshark in pcap format. 
• A lua dissector companion file decodes the 

received events and show them in human 
friendly mode.

56



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Operating Modes [2/5]

57



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Operating Modes [3/5]

58

Event



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Operating Modes [4/5]

• (b) Packets + eBPF events. 
• Events are received and stored on a LRU 

hash table that will be used to match 
packets. 

• Received packets are matched against the 
LRU hash table and in case of a match, the 
packet is extended to add event information

59



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

ebpfdump Operating Modes [5/5]

60

libpebpfflow libpcap

LRU
Hash

eBPF
Events

Packet

Packet
+

Event Info
Merge

Add



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Timing [1/3]

61

accept()

connect() 
[return]

connect() 
[enter]



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Timing [2/3]

62

SYN

Event

No Merge 
(too early)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Timing [3/3]

63

Event

Data Merge 
(Event + Pkt)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Naming [1/3]

• Mapping ContainerIds with Host Interfaces

64

root@ntop-ubuntu:/home/deri/libebpfflow/utils# ./docker_show_veth.sh  
veth        containerId 
----------------------- 
vethd38ebdb xenodochial_rosalind 

root@ntop-ubuntu:/home/deri/libebpfflow/utils# ifconfig vethd38ebdb 
vethd38ebdb: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500 
        inet6 fe80::9803:15ff:fe41:5b47  prefixlen 64  scopeid 0x20<link> 
        ether 9a:03:15:41:5b:47  txqueuelen 0  (Ethernet) 
        RX packets 65  bytes 5844 (5.8 KB) 
        RX errors 0  dropped 0  overruns 0  frame 0 
        TX packets 127  bytes 11706 (11.7 KB) 
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Naming [2/3]

65

1570482464.998115 [eth0][Rcvd][IPv4/TCP][pid/tid: 17330/17330 [/usr/bin/python2.7], uid/gid: 0/0][father 
pid/tid: 17158/0 [/bin/bash], uid/gid: 0/0][addr: 192.168.1.202:54235 <-> 172.17.0.2:80][ACCEPT]
[containerID: 79ba73e1213768da608fca002c6b2f5b0c994ce3c4cf62acf1805ebef293b418][docker_name: 
xenodochial_rosalind]

Container Interface (no vethXXX, won’t help)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Naming [3/3]

• Merging Via Container Name 
• Container Name (Docker) 

• Pod (Kubernetes)

66

root     11334 58.6  5.2 232640 106200 pts/1   S    23:16   0:03 /usr/
lib/x86_64-linux-gnu/wireshark/extcap/ebpfdump --capture --extcap-
interface ebpf --fifo /tmp/wireshark_extcap_ebpf_20191007231612_O1Q4Om --
ifname vethd38ebdb@xenodochial_rosalind 

 /usr/lib/x86_64-linux-gnu/wireshark/extcap/ebpfdump --capture --extcap-interface 
ebpf --fifo /tmp/wireshark_extcap_ebpf_20191007234339_IIdYnh --ifname 
veth24b4614d@kube-dns-6bfbdd666c-5jbmx



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Headers [1/4]

• Start the container (container eth0 172.17.0.2) 

• Connect from remote 

67

$ docker run -d --name=Jupyter_Test --rm -p 4443:8888 jupyter/datascience-notebook

curl http://host_ip:4443


1570441451.556130 [eth0][Rcvd][IPv4/TCP][pid/tid: 10713/10713 [/opt/conda/bin/python3.7], uid/
gid: 1000/100][father pid/tid: 10594/0 [/opt/conda/bin/tini], uid/gid: 1000/100][addr: 
178.62.197.130:60905 <-> 172.17.0.2:8888][ACCEPT][containerID: 
e6296af65a71795c60ff6d5034834ec4216b598658a7111cad42a5de9ffe67ee][docker_name: 
Jupyter_Test

Remote IP Container IP
Container 
Local Port

Host 
Mapped Port

http://host_ip:4443


#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Headers [2/4]

68

curl

178.62.197.130

192.12.x.y

172.17.0.2
http://192.12.x.y:4443

Port 443 Port 8888
Container

Port 4443



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Headers [3/4]

69

# lsof -i -n|grep 4443

docker-pr 16671            root    4u  IPv6 124484430      0t0  TCP *:4443 (LISTEN)


# iptables -L -t nat |grep 4443

DNAT       tcp  --  anywhere             anywhere             tcp dpt:4443 to:172.17.0.2:8080

# ps auxw|grep 16671

root     16671  0.0  0.0 378868  2752 ?        Sl   11:54   0:00 /usr/bin/docker-proxy -proto 
tcp -host-ip 0.0.0.0 -host-port 4443 -container-ip 172.17.0.2 -container-port 8080

• Linux DNAT (Destination NAT) does the magic 
mapping ports and IP addresses 



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Merging Events with Packets: Headers [4/4]

• As you can see with eBPF we observe 
• Remote IP address and port 
• Container IP and local port 
• No host information reported in events (transparent 

to the event). 
• This means that events can be mapped to packets only 

on vethX interfaces as on the physical host interface 
packets will not have the same 5-tuple of the events.

70



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

How to Capture on Multiple Hosts?

71

Publishers

Subscriber



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Remote Flow Collection

• Enable flow collection on the host where 
Wireshark is running (1:N topology)

72



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Remote Flow Export

• Each remote host needs to run 
• ebpflowexport -z “tcp://<wireshark 

PC>:6789c"  
• Flows are exported and sent in binary format 

on the “ebpf” topic. 
• The extcap plugin receives the flows and 

passes them to Wireshark

73



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

eBPF on non-Linux OSs

74

• ZMQ flow collection 
allows events to be 
delivered remotely 

• Extcap module 
ported to MacOS 
(and potentially on 
other platforms 
such as Windows)



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Future Work: Android

• eBPF is just being supported on Android…

75

https://source.android.com/devices/architecture/kernel/bpf



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Wireshark+eBPF: Complete Picture

76



#sf19eu  •  Palacio Estoril Hotel, Estoril, Portugal  •  Nov 4 - 8 

Thank You

77


