ntop MiniConf 2021
What's new in PF_RING 8.x

Alfredo Cardigliano
cardigliano@ntop.org
Introduction

• PF_RING packet capture SDK
 ◦ Any commodity adapter supported (linux performance)
 ◦ Accelerated Zero Copy drivers (PF_RING ZC) for Intel commodity adapters
 ◦ Support for specialized FPGA adapters (Napatech, Silicom/Fiberblaze, Accolade, and many others)
XDP

• eXpress Data Path
• Programmable (eBPF), high-performance packet processing in the Linux kernel
• Actions: drop, send back, modify, pass to the kernel, deliver to an application
• AF_XDP socket for packet capture
AF_XDP Performance

- Copy mode for legacy drivers
- Zero Copy mode supported by many Linux drivers today
- Slower than full kernel bypass technologies (kernel is still involved), but much faster than vanilla drivers
- In our tests (Xeon E3):
 - Single queue: 7 Mpps
 - 4 RSS queues: 15 Mpps (10 Gbit)
AF_XDP Integration

• PF_RING 8.0 includes enhanced AF_XDP support:
 ◦ Full Zero Copy buffers management
 ◦ Batch capture (introduced also a new PF_RING API)
 ◦ Performance improvements

• Not as fast as PF_RING ZC drivers (capable of 15-20 Mpps on a single core), but a good option for adapters which are not supported by PF_RING ZC
Let's Recap

- Linux drivers (any adapter)
 - Up to 2-3 Gbps
- XDP drivers (any adapter with Zero Copy drivers)
 - Up to 10 Gbps, big average packet size
- Intel adapters with PF_RING ZC drivers
 - 10+ Gbps any packet size
 - Up to 100 Gbps with real-life traffic and RSS (Intel E810 introduced last year)
- FPGA adapters
 - 100 Gbps any packet size
Mellanox/NVIDIA Adapters

• Low cost commodity adapters (same price range as Intel)
• 1/10/25/40/50/100/200 Gbit
• Hardware offloads:
 ◦ Load-balancing (RSS)
 ◦ Traffic duplication
 ◦ Packet filtering
 ◦ Nanosecond timestamps
PF_RING ZC for Mellanox

• New Zero Copy driver for Mellanox adapters
• Introduced in PF_RING 8.1
• Supported adapters: ConnectX 4/5/6
• Native driver:
 ◦ Mellanox was already supported via AF_XDP, but this delivers way better performance
 ◦ Direct access to all hardware offload capabilities
Load-Balancing (RSS)

• Load balance traffic to multiple queues/cores
• Similar to RSS on Intel
• Constraint: multithreaded applications only
• Example: suitable for nProbe Cento to scale the performance up to 100 Gbps
Traffic Duplication

• Native in-hardware packet duplication (open the same interface multiple times), not available on Intel
• Start nProbe Cento and n2disk on the same interface (they both receive the same packets), with different load-balancing configurations:
 ◦ Load-balance to 8 RSS queues for nProbe Cento
 ◦ Single queue for n2disk (to avoid shuffling packets)
Packet Filtering

• Flexible in-hardware packet filtering (combination of all common header fields, rule priority, ...)
• Up to 64k rules
• Rules are per application: nProbe Cento can instruct the adapter to receive all traffic, while n2disk discards in hardware all traffic which is not relevant
• Automatically generate hardware rules from BPF filters (e.g. "dst host 10.0.0.1 and port 80")
Performance

• Single core capture on Xeon Gold: 32 Mpps
 ◦ 20 Gbps with worst-case 60-byte packets
 ◦ 40 Gbps with an average packet size of 128 bytes
• Multiple cores (RSS): 100 Gbps line-rate
• Real application performance (**nProbe Cento**)
 ◦ **100 Gbps** with 16 cores
 ◦ 40 Gbps with 4 cores
What's next?

• Packets captured with PF_RING do not carry metadata like user and application that produced the traffic (relevant when doing security analysis)

• Adding support for process and user information in nProbe (SRC_PROC_PID, SRC_PROC_NAME, SRC_PROC_USER_NAME, SRC_PROC_PACKAGE_NAME, ..)

• Use PF_RING as SDK for capturing system events for connections, sockets and related information like process and user
n2disk (Continuous Recording)

• In the last year..
 ◦ Improved integration with ntopng
 • Ability to drill down and extract traffic (PCAP) recorded by n2disk
 • Ability to export flows to ntopng to provide visibility on recorded traces (PF_RING FT and nDPI support)
 ◦ Traffic indexing and extraction by source Device and Port ID (provided by Arista switches)
 ◦ Improved PCAP management and automation with external scripts
• What's next
 ◦ Ability to export flows to ClickHouse (compatible with ntopng)
 ◦ PCAP data encryption at-rest
nScrub (DDoS Mitigation)

• In the last year..
 ◦ Improved attackers and (huge) white/black lists management
 ◦ Support non Intel/ZC interfaces (XDP, Mellanox, FPGAs)
 ◦ Support for AMD systems (cost-effective boxes with AMD and Mellanox)
 ◦ Extended policies (e.g. IPSEC support)

• What's next
 ◦ Improve the integration with ntopng and other applications
 ◦ Encrypted, authenticated, fast channel for rules injection
 ◦ Smart mitigation engaging: mitigate traffic towards the actual victim only, when configuring a huge subnet (e.g. ISPs)
Thank You